Trouver les codes INSEE fournis dans le champ additional_data
attribut communeInseeCode
, existant dans la table ref_geo.l_areas
mais qui ne correspondent pas à ceux présent dans la table gn_synthese.cor_area_synthee
:
WITH communes AS ( SELECT la.id_area, la.area_code AS insee_code, la.area_name FROM ref_geo.l_areas AS la WHERE la.id_type = ref_geo.get_id_area_type_by_code('COM') AND la."enable" = TRUE ) SELECT s.unique_id_sinp, s.the_geom_4326, s.additional_data::json->>'communeInseeCode' AS code_insee_json, c.area_name AS area_name_cas, c.insee_code AS code_insee_cas FROM gn_synthese.synthese AS s LEFT JOIN gn_synthese.cor_area_synthese AS cas ON (s.id_synthese = cas.id_synthese) JOIN communes AS c ON (cas.id_area = c.id_area) WHERE s."precision" IS NULL AND s.additional_data::json->>'communeInseeCode' != c.insee_code ;
Trouver les codes INSEE fournis dans le champ additional_data
attribut communeInseeCode
qui ne correspondent pas à ceux présent dans la table gn_synthese.cor_area_synthee
car ils n'existent pas dans la table ref_geo.l_areas
:
WITH communes AS ( SELECT la.id_area, la.area_code AS insee_code, la.area_name FROM ref_geo.l_areas AS la WHERE la.id_type = ref_geo.get_id_area_type_by_code('COM') AND la."enable" = TRUE ) SELECT DISTINCT s.additional_data::json->>'communeInseeCode' AS code_insee_json FROM gn_synthese.synthese AS s LEFT JOIN gn_synthese.cor_area_synthese AS cas ON (s.id_synthese = cas.id_synthese) JOIN communes AS c ON (cas.id_area = c.id_area) WHERE s."precision" IS NULL AND s.additional_data::json->>'communeInseeCode' != c.insee_code AND s.additional_data::json->>'communeInseeCode' NOT IN (SELECT insee_code FROM communes);
SELECT unique_id_sinp, round(radius(ST_MinimumBoundingRadius(la.geom))) AS "precision", center(ST_MinimumBoundingRadius(la.geom)) AS rayon, ST_MinimumBoundingCircle(la.geom) AS cercle, ST_LongestLine(center(ST_MinimumBoundingRadius(la.geom)), ST_MinimumBoundingCircle(la.geom)) AS rayon, st_centroid(la.geom) AS centroid, la.geom, la.area_name FROM gn_synthese.synthese AS s LEFT JOIN gn_synthese.cor_area_synthese AS cas ON (s.id_synthese = cas.id_synthese) JOIN ref_geo.l_areas AS la ON (cas.id_area = la.id_area) WHERE s.id_source != gn_synthese.get_id_source_by_name('SI CBN') AND s."precision" IS NULL AND la.id_type = ref_geo.get_id_area_type_by_code('COM') LIMIT 100;
ST_MinimumBoundingRadius()
de Postgis (trait oblique): round(radius(ST_MinimumBoundingRadius(geom)))
round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom)))
round(|/(st_area(geom)/pi()))::INT
La première méthode retourne un rayon plus grand que la seconde méthode, en moyenne la plus petite valeur obtenue étant avec le calcul du rayon d'un cercle à partir de son aire… Nous avons retenu le calcul n°2.
SELECT la.area_name, la.area_code, round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom))) AS "precision_avgdistance", round(|/(st_area(la.geom)/pi()))::INT AS "precision_calculaire", round(radius(ST_MinimumBoundingRadius(la.geom))) AS "precision_minboundingradius", la.geom, st_centroid(la.geom) AS centroid, center(ST_MinimumBoundingRadius(la.geom)) AS centre, ST_MinimumBoundingCircle(la.geom) AS cercle, ST_LongestLine(center(ST_MinimumBoundingRadius(la.geom)), ST_MinimumBoundingCircle(la.geom)) AS rayon_minboundingradius, ST_MakeLine( center(ST_MinimumBoundingRadius(la.geom)), ST_SetSRID( ST_MakePoint( ST_X(center(ST_MinimumBoundingRadius(la.geom))) + round(|/(st_area(la.geom)/pi()))::INT, ST_Y(center(ST_MinimumBoundingRadius(la.geom))) ), 2154 ) ) AS rayon_calculaire, ST_MakeLine( center(ST_MinimumBoundingRadius(la.geom)), ST_SetSRID( ST_MakePoint( ST_X(center(ST_MinimumBoundingRadius(la.geom))), ST_Y(center(ST_MinimumBoundingRadius(la.geom))) + round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom))) ), 2154 ) ) AS rayon_avgdistance FROM ref_geo.l_areas AS la JOIN ( SELECT id_area, (ST_DumpPoints(geom)).* FROM ref_geo.l_areas WHERE id_type = ref_geo.get_id_area_type('COM') ) AS perimeters ON (la.id_area = perimeters.id_area) WHERE la.id_type = ref_geo.get_id_area_type('COM') GROUP BY la.id_area, la.geom, la.area_name, la.area_code ORDER BY la.id_area LIMIT 10 ;
Source: https://salayhin.wordpress.com/2018/01/02/finding-missing-index-in-postgresql/
SELECT schemaname, relname, seq_scan - idx_scan AS too_much_seq, CASE WHEN seq_scan - COALESCE(idx_scan, 0) > 0 THEN 'Missing Index ?' ELSE 'OK' END, pg_relation_size(CONCAT(schemaname, '.', relname)::regclass) AS rel_size, seq_scan, idx_scan FROM pg_stat_all_tables WHERE pg_relation_size(CONCAT(schemaname, '.', relname)::regclass) > 80000 ORDER BY too_much_seq DESC;
SELECT x1.table_in_trouble, pg_relation_size(x1.table_in_trouble) AS sz_n_byts, x1.seq_scan, x1.idx_scan, CASE WHEN pg_relation_size(x1.table_in_trouble) > 500000000 THEN 'Exceeds 500 megs, too large to count in a view. For a count, count individually'::text ELSE COUNT(x1.table_in_trouble)::text END AS tbl_rec_count, x1.priority FROM ( SELECT (schemaname::text || '.'::text) || relname::text AS table_in_trouble, seq_scan, idx_scan, CASE WHEN (seq_scan - idx_scan) < 500 THEN 'Minor Problem'::text WHEN (seq_scan - idx_scan) >= 500 AND (seq_scan - idx_scan) < 2500 THEN 'Major Problem'::text WHEN (seq_scan - idx_scan) >= 2500 THEN 'Extreme Problem'::text ELSE NULL::text END AS priority FROM pg_stat_all_tables WHERE seq_scan > idx_scan AND schemaname != 'pg_catalog'::name AND seq_scan > 100) x1 GROUP BY x1.table_in_trouble, x1.seq_scan, x1.idx_scan, x1.priority ORDER BY x1.priority DESC, x1.seq_scan;
Requête SQL permettant de déterminer les groupes de suites d'identifiants non contigü et le nombre d'id compris dedans :
SELECT grp, "min", "max", COUNT(id_data) AS downloaded, td.nbr AS to_download FROM ( SELECT grp, MIN(id) AS "min", MAX(id) AS "max" FROM ( SELECT id, SUM(rst) OVER (ORDER BY id) AS grp FROM ( SELECT id_synthese AS id, CASE WHEN COALESCE(LAG(id_synthese + 10000) OVER (ORDER BY id_synthese), 0) < id_synthese THEN 1 END AS rst FROM gn2pg_flavia.id_synthese_pole_invertebres AS ispi LEFT JOIN gn2pg_flavia.data_json AS dj ON ispi.id_synthese = dj.id_data WHERE dj.id_data IS NULL ORDER BY ispi.id_synthese ASC ) AS t ) AS t GROUP BY grp ORDER BY 1 ) AS d LEFT JOIN gn2pg_flavia.data_json AS dj ON dj.id_data > d.min AND dj.id_data < d.max, LATERAL ( SELECT COUNT(id_synthese) AS nbr FROM gn2pg_flavia.id_synthese_pole_invertebres WHERE id_synthese > d.min AND id_synthese < d.max ) AS td WHERE td.nbr > 0 GROUP BY d.grp, d."min", d."max", td.nbr ORDER BY d.grp;
Résultats :
|grp|min |max |downloaded|to_download| |---|----------|----------|----------|-----------| |1 |5 839 897 |6 467 981 |3 255 |581 087 | |2 |9 404 094 |9 576 583 |0 |172 488 | |3 |15 444 377 |15 455 826 |2 454 |2 773 | |4 |15 609 091 |15 609 795 |703 |703 | |5 |16 335 991 |16 336 391 |1 |52 | |6 |16 640 640 |16 641 280 |290 |639 |