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Requête SQL utiles

Correspondance entre code INSEE présent dans
additional_data et cor_area_synthese

Trouver les codes INSEE fournis dans le champ additional_data attribut communeInseeCode,
existant dans la table ref_geo.l_areas mais qui ne correspondent pas à ceux présent dans la table
gn_synthese.cor_area_synthee :

WITH communes AS (
    SELECT la.id_area, la.area_code AS insee_code, la.area_name
    FROM ref_geo.l_areas AS la
    WHERE la.id_type = ref_geo.get_id_area_type_by_code('COM')
        AND la."enable" = TRUE
)
SELECT s.unique_id_sinp, s.the_geom_4326,
s.additional_data::json->>'communeInseeCode' AS code_insee_json, c.area_name
AS area_name_cas, c.insee_code AS code_insee_cas
FROM gn_synthese.synthese AS s
    LEFT JOIN gn_synthese.cor_area_synthese AS cas
        ON (s.id_synthese = cas.id_synthese)
    JOIN communes AS c
        ON (cas.id_area = c.id_area)
WHERE s."precision" IS NULL
    AND s.additional_data::json->>'communeInseeCode' != c.insee_code ;

Trouver les codes INSEE fournis dans le champ additional_data attribut communeInseeCode qui
ne correspondent pas à ceux présent dans la table gn_synthese.cor_area_synthee car ils
n'existent pas dans la table ref_geo.l_areas :

WITH communes AS (
    SELECT la.id_area, la.area_code AS insee_code, la.area_name
    FROM ref_geo.l_areas AS la
    WHERE la.id_type = ref_geo.get_id_area_type_by_code('COM')
        AND la."enable" = TRUE
)
SELECT DISTINCT s.additional_data::json->>'communeInseeCode' AS
code_insee_json
FROM gn_synthese.synthese AS s
    LEFT JOIN gn_synthese.cor_area_synthese AS cas
        ON (s.id_synthese = cas.id_synthese)
    JOIN communes AS c
        ON (cas.id_area = c.id_area)
WHERE s."precision" IS NULL
    AND s.additional_data::json->>'communeInseeCode' != c.insee_code
    AND s.additional_data::json->>'communeInseeCode' NOT IN (SELECT
insee_code FROM communes);
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Calculer le rayon du cercle comprenant un polygone
(communes)

SELECT
    unique_id_sinp,
    round(radius(ST_MinimumBoundingRadius(la.geom))) AS "precision",
    center(ST_MinimumBoundingRadius(la.geom)) AS rayon,
    ST_MinimumBoundingCircle(la.geom) AS cercle,
    ST_LongestLine(center(ST_MinimumBoundingRadius(la.geom)),
ST_MinimumBoundingCircle(la.geom)) AS rayon,
    st_centroid(la.geom) AS centroid,
    la.geom,
    la.area_name
FROM gn_synthese.synthese AS s
    LEFT JOIN gn_synthese.cor_area_synthese AS cas
        ON (s.id_synthese = cas.id_synthese)
    JOIN ref_geo.l_areas AS la
        ON (cas.id_area = la.id_area)
WHERE s.id_source != gn_synthese.get_id_source_by_name('SI CBN')
    AND s."precision" IS NULL
    AND la.id_type = ref_geo.get_id_area_type_by_code('COM')
LIMIT 100;

Différents calculs du rayon moyen d'un polygone
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 Il est possible d'utiliser :

la fonction ST_MinimumBoundingRadius() de Postgis (trait oblique):1.

round(radius(ST_MinimumBoundingRadius(geom)))

la distance moyenne du centroïde du polygone a chaque point constituant son périmètre (trait2.
vertical) :

round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom)))

le calcul du rayon d'un cercle à partir de son aire (trait horizontal) :3.

round(|/(st_area(geom)/pi()))::INT

La première méthode retourne un rayon plus grand que la seconde méthode, en moyenne la plus
petite valeur obtenue étant avec le calcul du rayon d'un cercle à partir de son aire… Nous avons
retenu le calcul n°2.

SELECT
    la.area_name,
    la.area_code,
    round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom))) AS
"precision_avgdistance",
    round(|/(st_area(la.geom)/pi()))::INT AS "precision_calculaire",
    round(radius(ST_MinimumBoundingRadius(la.geom))) AS
"precision_minboundingradius",
    la.geom,
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    st_centroid(la.geom) AS centroid,
    center(ST_MinimumBoundingRadius(la.geom)) AS centre,
    ST_MinimumBoundingCircle(la.geom) AS cercle,
    ST_LongestLine(center(ST_MinimumBoundingRadius(la.geom)),
ST_MinimumBoundingCircle(la.geom)) AS rayon_minboundingradius,
    ST_MakeLine(
    center(ST_MinimumBoundingRadius(la.geom)),
        ST_SetSRID(
            ST_MakePoint(
                ST_X(center(ST_MinimumBoundingRadius(la.geom))) +
round(|/(st_area(la.geom)/pi()))::INT,
                ST_Y(center(ST_MinimumBoundingRadius(la.geom)))
            ),
            2154
        )
    ) AS rayon_calculaire,
    ST_MakeLine(
        center(ST_MinimumBoundingRadius(la.geom)),
        ST_SetSRID(
            ST_MakePoint(
                ST_X(center(ST_MinimumBoundingRadius(la.geom))),
                ST_Y(center(ST_MinimumBoundingRadius(la.geom))) +
round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom)))
            ),
            2154
        )
    ) AS rayon_avgdistance
FROM ref_geo.l_areas AS la JOIN (
    SELECT id_area, (ST_DumpPoints(geom)).*
    FROM ref_geo.l_areas
    WHERE id_type = ref_geo.get_id_area_type('COM')
) AS perimeters
    ON (la.id_area = perimeters.id_area)
WHERE la.id_type = ref_geo.get_id_area_type('COM')
GROUP BY la.id_area, la.geom, la.area_name, la.area_code
ORDER BY la.id_area
LIMIT 10 ;

Calculer le diamètre d'un type de géométrie

Pour le calcul du diamètre, nous utilisons la distance moyenne du centroïde du polygone a chaque
point constituant son périmètre :

WITH areas AS (
    SELECT
        id_area,
        area_name AS title,
        area_code AS code,
        geom
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    FROM ref_geo.l_areas
    WHERE id_type = ref_geo.get_id_area_type('COM')
        AND "enable" = TRUE
),
perimeters AS (
    SELECT
        id_area,
        (st_dumppoints(geom)).*
    FROM areas
),
diameters AS (
    SELECT
        a.id_area,
        a.title,
        a.code,
        (round(avg(st_distance(st_centroid(a.geom), p.geom))) * 2) AS
"diameter"
    FROM areas AS a
        JOIN perimeters AS p
            ON (a.id_area = p.id_area)
    GROUP BY a.id_area, a.title, a.code
    ORDER BY a.id_area
)
SELECT
    avg("diameter")
FROM diameters;

Déterminer s'il manque des index

Source: https://salayhin.wordpress.com/2018/01/02/finding-missing-index-in-postgresql/

SELECT
    schemaname,
    relname,
    seq_scan - idx_scan AS too_much_seq,
    CASE
        WHEN seq_scan - COALESCE(idx_scan, 0) > 0 THEN 'Missing Index ?'
        ELSE 'OK'
    END,
    pg_relation_size(CONCAT(schemaname, '.', relname)::regclass) AS
rel_size,
    seq_scan, idx_scan
FROM pg_stat_all_tables
WHERE pg_relation_size(CONCAT(schemaname, '.', relname)::regclass) > 80000
ORDER BY too_much_seq DESC;

SELECT
  x1.table_in_trouble,
  pg_relation_size(x1.table_in_trouble) AS sz_n_byts,

https://salayhin.wordpress.com/2018/01/02/finding-missing-index-in-postgresql/
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  x1.seq_scan,
  x1.idx_scan,
  CASE
    WHEN pg_relation_size(x1.table_in_trouble) > 500000000
        THEN 'Exceeds 500 megs, too large to count in a view. For a count,
count individually'::text
    ELSE COUNT(x1.table_in_trouble)::text
  END AS tbl_rec_count,
  x1.priority
FROM
  (
    SELECT
      (schemaname::text || '.'::text) || relname::text AS table_in_trouble,
      seq_scan,
      idx_scan,
      CASE
          WHEN (seq_scan - idx_scan) < 500
            THEN 'Minor Problem'::text
          WHEN (seq_scan - idx_scan) >= 500 AND (seq_scan - idx_scan) < 2500
            THEN 'Major Problem'::text
          WHEN (seq_scan - idx_scan) >= 2500
            THEN 'Extreme Problem'::text
          ELSE NULL::text
      END AS priority
    FROM
      pg_stat_all_tables
    WHERE
      seq_scan > idx_scan
      AND schemaname != 'pg_catalog'::name
    AND seq_scan > 100) x1
GROUP BY
  x1.table_in_trouble,
  x1.seq_scan,
  x1.idx_scan,
  x1.priority
ORDER BY
  x1.priority DESC,
  x1.seq_scan;

Déterminer les groupes d'identifiant contigu

Requête SQL permettant de déterminer les groupes de suites d'identifiants non contigü et le nombre
d'id compris dedans :

SELECT
    grp,
    "min",
    "max",
    COUNT(id_data) AS downloaded,
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    td.nbr AS to_download
FROM (
        SELECT
            grp,
            MIN(id) AS "min",
            MAX(id) AS "max"
        FROM (
            SELECT
                id,
                SUM(rst) OVER (ORDER BY id) AS grp
            FROM (
                SELECT
                    id_synthese AS id,
                    CASE WHEN COALESCE(LAG(id_synthese + 10000) OVER (ORDER
BY id_synthese), 0) < id_synthese THEN 1 END AS rst
                FROM gn2pg_flavia.id_synthese_pole_invertebres AS ispi
                    LEFT JOIN gn2pg_flavia.data_json AS dj
                        ON ispi.id_synthese = dj.id_data
                WHERE dj.id_data IS NULL
                ORDER BY ispi.id_synthese ASC
            ) AS t
        ) AS t
        GROUP BY grp
        ORDER BY 1
    ) AS d
    LEFT JOIN gn2pg_flavia.data_json AS dj
        ON dj.id_data > d.min AND dj.id_data < d.max,
    LATERAL (
        SELECT COUNT(id_synthese) AS nbr
        FROM gn2pg_flavia.id_synthese_pole_invertebres
        WHERE id_synthese > d.min AND id_synthese < d.max
    ) AS td
WHERE td.nbr > 0
GROUP BY d.grp, d."min", d."max", td.nbr
ORDER BY d.grp;

Résultats :

|grp|min       |max       |downloaded|to_download|
|---|----------|----------|----------|-----------|
|1  |5 839 897  |6 467 981  |3 255     |581 087    |
|2  |9 404 094  |9 576 583  |0         |172 488    |
|3  |15 444 377 |15 455 826 |2 454     |2 773      |
|4  |15 609 091 |15 609 795 |703       |703        |
|5  |16 335 991 |16 336 391 |1         |52         |
|6  |16 640 640 |16 641 280 |290       |639        |
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