
2026/02/18 15:35 1/8 Requête SQL utiles

CBNA SINP - http://wiki-sinp.cbn-alpin.fr/

Requête SQL utiles

Correspondance entre code INSEE présent dans
additional_data et cor_area_synthese

Trouver les codes INSEE fournis dans le champ additional_data attribut communeInseeCode,
existant dans la table ref_geo.l_areas mais qui ne correspondent pas à ceux présent dans la table
gn_synthese.cor_area_synthee :

WITH communes AS (
 SELECT la.id_area, la.area_code AS insee_code, la.area_name
 FROM ref_geo.l_areas AS la
 WHERE la.id_type = ref_geo.get_id_area_type_by_code('COM')
 AND la."enable" = TRUE
)
SELECT s.unique_id_sinp, s.the_geom_4326,
s.additional_data::json->>'communeInseeCode' AS code_insee_json, c.area_name
AS area_name_cas, c.insee_code AS code_insee_cas
FROM gn_synthese.synthese AS s
 LEFT JOIN gn_synthese.cor_area_synthese AS cas
 ON (s.id_synthese = cas.id_synthese)
 JOIN communes AS c
 ON (cas.id_area = c.id_area)
WHERE s."precision" IS NULL
 AND s.additional_data::json->>'communeInseeCode' != c.insee_code ;

Trouver les codes INSEE fournis dans le champ additional_data attribut communeInseeCode qui
ne correspondent pas à ceux présent dans la table gn_synthese.cor_area_synthee car ils
n'existent pas dans la table ref_geo.l_areas :

WITH communes AS (
 SELECT la.id_area, la.area_code AS insee_code, la.area_name
 FROM ref_geo.l_areas AS la
 WHERE la.id_type = ref_geo.get_id_area_type_by_code('COM')
 AND la."enable" = TRUE
)
SELECT DISTINCT s.additional_data::json->>'communeInseeCode' AS
code_insee_json
FROM gn_synthese.synthese AS s
 LEFT JOIN gn_synthese.cor_area_synthese AS cas
 ON (s.id_synthese = cas.id_synthese)
 JOIN communes AS c
 ON (cas.id_area = c.id_area)
WHERE s."precision" IS NULL
 AND s.additional_data::json->>'communeInseeCode' != c.insee_code
 AND s.additional_data::json->>'communeInseeCode' NOT IN (SELECT
insee_code FROM communes);

Last update: 2025/12/03 14:48 database:requetes-sql-utiles http://wiki-sinp.cbn-alpin.fr/database/requetes-sql-utiles

http://wiki-sinp.cbn-alpin.fr/ Printed on 2026/02/18 15:35

Calculer le rayon du cercle comprenant un polygone
(communes)

SELECT
 unique_id_sinp,
 round(radius(ST_MinimumBoundingRadius(la.geom))) AS "precision",
 center(ST_MinimumBoundingRadius(la.geom)) AS rayon,
 ST_MinimumBoundingCircle(la.geom) AS cercle,
 ST_LongestLine(center(ST_MinimumBoundingRadius(la.geom)),
ST_MinimumBoundingCircle(la.geom)) AS rayon,
 st_centroid(la.geom) AS centroid,
 la.geom,
 la.area_name
FROM gn_synthese.synthese AS s
 LEFT JOIN gn_synthese.cor_area_synthese AS cas
 ON (s.id_synthese = cas.id_synthese)
 JOIN ref_geo.l_areas AS la
 ON (cas.id_area = la.id_area)
WHERE s.id_source != gn_synthese.get_id_source_by_name('SI CBN')
 AND s."precision" IS NULL
 AND la.id_type = ref_geo.get_id_area_type_by_code('COM')
LIMIT 100;

Différents calculs du rayon moyen d'un polygone

http://wiki-sinp.cbn-alpin.fr/_detail/database/screenshot_20211013_161602.png?id=database%3Arequetes-sql-utiles

2026/02/18 15:35 3/8 Requête SQL utiles

CBNA SINP - http://wiki-sinp.cbn-alpin.fr/

 Il est possible d'utiliser :

la fonction ST_MinimumBoundingRadius() de Postgis (trait oblique):1.

round(radius(ST_MinimumBoundingRadius(geom)))

la distance moyenne du centroïde du polygone a chaque point constituant son périmètre (trait2.
vertical) :

round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom)))

le calcul du rayon d'un cercle à partir de son aire (trait horizontal) :3.

round(|/(st_area(geom)/pi()))::INT

La première méthode retourne un rayon plus grand que la seconde méthode, en moyenne la plus
petite valeur obtenue étant avec le calcul du rayon d'un cercle à partir de son aire… Nous avons
retenu le calcul n°2.

SELECT
 la.area_name,
 la.area_code,
 round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom))) AS
"precision_avgdistance",
 round(|/(st_area(la.geom)/pi()))::INT AS "precision_calculaire",
 round(radius(ST_MinimumBoundingRadius(la.geom))) AS
"precision_minboundingradius",
 la.geom,

http://wiki-sinp.cbn-alpin.fr/_detail/database/screenshot_20211018_102010.png?id=database%3Arequetes-sql-utiles

Last update: 2025/12/03 14:48 database:requetes-sql-utiles http://wiki-sinp.cbn-alpin.fr/database/requetes-sql-utiles

http://wiki-sinp.cbn-alpin.fr/ Printed on 2026/02/18 15:35

 st_centroid(la.geom) AS centroid,
 center(ST_MinimumBoundingRadius(la.geom)) AS centre,
 ST_MinimumBoundingCircle(la.geom) AS cercle,
 ST_LongestLine(center(ST_MinimumBoundingRadius(la.geom)),
ST_MinimumBoundingCircle(la.geom)) AS rayon_minboundingradius,
 ST_MakeLine(
 center(ST_MinimumBoundingRadius(la.geom)),
 ST_SetSRID(
 ST_MakePoint(
 ST_X(center(ST_MinimumBoundingRadius(la.geom))) +
round(|/(st_area(la.geom)/pi()))::INT,
 ST_Y(center(ST_MinimumBoundingRadius(la.geom)))
),
 2154
)
) AS rayon_calculaire,
 ST_MakeLine(
 center(ST_MinimumBoundingRadius(la.geom)),
 ST_SetSRID(
 ST_MakePoint(
 ST_X(center(ST_MinimumBoundingRadius(la.geom))),
 ST_Y(center(ST_MinimumBoundingRadius(la.geom))) +
round(AVG(ST_Distance(st_centroid(la.geom), perimeters.geom)))
),
 2154
)
) AS rayon_avgdistance
FROM ref_geo.l_areas AS la JOIN (
 SELECT id_area, (ST_DumpPoints(geom)).*
 FROM ref_geo.l_areas
 WHERE id_type = ref_geo.get_id_area_type('COM')
) AS perimeters
 ON (la.id_area = perimeters.id_area)
WHERE la.id_type = ref_geo.get_id_area_type('COM')
GROUP BY la.id_area, la.geom, la.area_name, la.area_code
ORDER BY la.id_area
LIMIT 10 ;

Calculer le diamètre d'un type de géométrie

Pour le calcul du diamètre, nous utilisons la distance moyenne du centroïde du polygone a chaque
point constituant son périmètre :

WITH areas AS (
 SELECT
 id_area,
 area_name AS title,
 area_code AS code,
 geom

2026/02/18 15:35 5/8 Requête SQL utiles

CBNA SINP - http://wiki-sinp.cbn-alpin.fr/

 FROM ref_geo.l_areas
 WHERE id_type = ref_geo.get_id_area_type('COM')
 AND "enable" = TRUE
),
perimeters AS (
 SELECT
 id_area,
 (st_dumppoints(geom)).*
 FROM areas
),
diameters AS (
 SELECT
 a.id_area,
 a.title,
 a.code,
 (round(avg(st_distance(st_centroid(a.geom), p.geom))) * 2) AS
"diameter"
 FROM areas AS a
 JOIN perimeters AS p
 ON (a.id_area = p.id_area)
 GROUP BY a.id_area, a.title, a.code
 ORDER BY a.id_area
)
SELECT
 avg("diameter")
FROM diameters;

Déterminer s'il manque des index

Source: https://salayhin.wordpress.com/2018/01/02/finding-missing-index-in-postgresql/

SELECT
 schemaname,
 relname,
 seq_scan - idx_scan AS too_much_seq,
 CASE
 WHEN seq_scan - COALESCE(idx_scan, 0) > 0 THEN 'Missing Index ?'
 ELSE 'OK'
 END,
 pg_relation_size(CONCAT(schemaname, '.', relname)::regclass) AS
rel_size,
 seq_scan, idx_scan
FROM pg_stat_all_tables
WHERE pg_relation_size(CONCAT(schemaname, '.', relname)::regclass) > 80000
ORDER BY too_much_seq DESC;

SELECT
 x1.table_in_trouble,
 pg_relation_size(x1.table_in_trouble) AS sz_n_byts,

https://salayhin.wordpress.com/2018/01/02/finding-missing-index-in-postgresql/

Last update: 2025/12/03 14:48 database:requetes-sql-utiles http://wiki-sinp.cbn-alpin.fr/database/requetes-sql-utiles

http://wiki-sinp.cbn-alpin.fr/ Printed on 2026/02/18 15:35

 x1.seq_scan,
 x1.idx_scan,
 CASE
 WHEN pg_relation_size(x1.table_in_trouble) > 500000000
 THEN 'Exceeds 500 megs, too large to count in a view. For a count,
count individually'::text
 ELSE COUNT(x1.table_in_trouble)::text
 END AS tbl_rec_count,
 x1.priority
FROM
 (
 SELECT
 (schemaname::text || '.'::text) || relname::text AS table_in_trouble,
 seq_scan,
 idx_scan,
 CASE
 WHEN (seq_scan - idx_scan) < 500
 THEN 'Minor Problem'::text
 WHEN (seq_scan - idx_scan) >= 500 AND (seq_scan - idx_scan) < 2500
 THEN 'Major Problem'::text
 WHEN (seq_scan - idx_scan) >= 2500
 THEN 'Extreme Problem'::text
 ELSE NULL::text
 END AS priority
 FROM
 pg_stat_all_tables
 WHERE
 seq_scan > idx_scan
 AND schemaname != 'pg_catalog'::name
 AND seq_scan > 100) x1
GROUP BY
 x1.table_in_trouble,
 x1.seq_scan,
 x1.idx_scan,
 x1.priority
ORDER BY
 x1.priority DESC,
 x1.seq_scan;

Déterminer les groupes d'identifiant contigu

Requête SQL permettant de déterminer les groupes de suites d'identifiants non contigü et le nombre
d'id compris dedans :

SELECT
 grp,
 "min",
 "max",
 COUNT(id_data) AS downloaded,

2026/02/18 15:35 7/8 Requête SQL utiles

CBNA SINP - http://wiki-sinp.cbn-alpin.fr/

 td.nbr AS to_download
FROM (
 SELECT
 grp,
 MIN(id) AS "min",
 MAX(id) AS "max"
 FROM (
 SELECT
 id,
 SUM(rst) OVER (ORDER BY id) AS grp
 FROM (
 SELECT
 id_synthese AS id,
 CASE WHEN COALESCE(LAG(id_synthese + 10000) OVER (ORDER
BY id_synthese), 0) < id_synthese THEN 1 END AS rst
 FROM gn2pg_flavia.id_synthese_pole_invertebres AS ispi
 LEFT JOIN gn2pg_flavia.data_json AS dj
 ON ispi.id_synthese = dj.id_data
 WHERE dj.id_data IS NULL
 ORDER BY ispi.id_synthese ASC
) AS t
) AS t
 GROUP BY grp
 ORDER BY 1
) AS d
 LEFT JOIN gn2pg_flavia.data_json AS dj
 ON dj.id_data > d.min AND dj.id_data < d.max,
 LATERAL (
 SELECT COUNT(id_synthese) AS nbr
 FROM gn2pg_flavia.id_synthese_pole_invertebres
 WHERE id_synthese > d.min AND id_synthese < d.max
) AS td
WHERE td.nbr > 0
GROUP BY d.grp, d."min", d."max", td.nbr
ORDER BY d.grp;

Résultats :

grp	min	max	downloaded	to_download
1	5 839 897	6 467 981	3 255	581 087
2	9 404 094	9 576 583	0	172 488
3	15 444 377	15 455 826	2 454	2 773
4	15 609 091	15 609 795	703	703
5	16 335 991	16 336 391	1	52
6	16 640 640	16 641 280	290	639

Last update: 2025/12/03 14:48 database:requetes-sql-utiles http://wiki-sinp.cbn-alpin.fr/database/requetes-sql-utiles

http://wiki-sinp.cbn-alpin.fr/ Printed on 2026/02/18 15:35

From:
http://wiki-sinp.cbn-alpin.fr/ - CBNA SINP

Permanent link:
http://wiki-sinp.cbn-alpin.fr/database/requetes-sql-utiles

Last update: 2025/12/03 14:48

http://wiki-sinp.cbn-alpin.fr/
http://wiki-sinp.cbn-alpin.fr/database/requetes-sql-utiles

	Requête SQL utiles
	Correspondance entre code INSEE présent dans additional_data et cor_area_synthese
	Calculer le rayon du cercle comprenant un polygone (communes)
	Différents calculs du rayon moyen d'un polygone
	Calculer le diamètre d'un type de géométrie
	Déterminer s'il manque des index
	Déterminer les groupes d'identifiant contigu

