
2026/01/31 12:19 1/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

Synthese - Tests d'amélioration des
performances

Objectif

Trouver des solutions pour supprimer la limite des 100 000 données affichables et exportables.

Principe général

Afin d'améliorer les performances du module Synthèse de GeoNature, nous pouvons remplacer le web
service geojson actuel servant à la fois au rendu sur la carte et à l'affichage des données en liste par
plusieurs web services spécialisés. Ces web services devront retourner des données relativement
constantes quelque soit le nombre d'observation à afficher résultant de la recherche effectuée dans la
Synthese.

Nous pouvons distinguer 3 principaux type de web services dans le module Synthese qui fournissent
des données à :

le tableau d'informations paginée
l'export des données
la carte

Nous proposerons des solutions pour chacun d'entre eux.

Solutions pour le tableau d'information paginée

Dans le cas des observations présentées sous forme de tableau paginées, la solution la plus
adéquates consiste à créer un web service paginée côté serveur. L'avantage de ce type de web
service c'est que le nombre d'informations retournées est constant quelque soit les résultats de la
recherche. Son utilisation dans certains modules de GeoNature a montré son efficacité et sa facilité
d'utilisation avec le composant Datatable d'Angular Material.

Côté serveur, il sera nécessaire de s'assurer que les requêtes exécuter en base de données soient
toujours les plus performantes possibles. Si nous souhaitons garder un tri similaire des observations, il
faudra rassembler les observations sélectionnée via la carte en début de liste.

Côté navigateur client, ce mécanisme permet de s'assurer que les performances seront toujours les
mêmes. Il faudra toutefois peut être retravailler le mécanisme d'interaction entre les observations de
la carte et du tableau. Il semble toutefois possible de s'appuyer sur la valeur du champ id_synthese
pour le maintenir.

Solutions pour l'export des données

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

Le travail effectué en 2023 sur le module Export a démontré qu'il était possible d'exporter un grand
volume de données sans surcharger la mémoire et l'espace disque du serveur. Mais pour cela, il est
nécessaire de générer l'export en arrière plan et alerter l'utilisateur lorsque l'export est prêt à être
téléchargé.

Pour cela, les nouveaux mécanismes tels que l'utilisation de tâches Celery et les notifications ajoutés
dans les dernières version de GeoNature nous permettrons de mettre en place un export performant
avec des limites très largement augmentées.

Toutefois, la mise en place de cette solution nécessitera de revenir sur la branche principale de
GeoNature dans laquelle les tâches Celery et les notifications ont été implémentées.

Solutions pour la carte

L'amélioration des performances d'affichage sur la carte et le point qui nécessite le plus
d'expérimentation car aucune solution satisfaisante n'a encore été expérimenté dans GeoNature.
Nous réaliserons donc la majorité des nos tests sur ce sujet particulier.

Toutefois, le web service GeoJson actuel a vu ces performances largement améliorées lors de travaux
effectués en 2022 avec le regroupement des observations par géométries identiques. Une
optimisation de la création du GeoJson a également été effectuée lors des travaux visant à permettre
le regroupement et l'affichage des observations par mailles sur la carte de la Synthese.

Afin de poursuivre l'amélioration de l'affichage d'une grand nombre d'observations sur la carte, nous
envisageons donc d'expérimenter les éléments suivant :

Tester la différence entre l'utilisation de la geom avec un SRID 2154 et 4326 pour les1.
intersections
Comparer la rapidité des intersections de géométrie à l'aide de : st_intersects() ou de &&2.
Comparer différents types d'index (GIST, BRIN, SP-GIST) sur le champ geométrie de la table3.
Synthese
Comparer l'utilisation d'une intersection spatiale vis à vis de l'utilisation d'une table relationnel4.
(cor_area_synthese)
Utilisation de tuiles vecteurs ou geojson permettant de paralléliser les requêtes en base de5.
données
Web service spécifique carto geojson/mvt filtrer sur la bbox de la carte actuellement visualisé6.
Utiliser un affichage différent en fonction du zoom : petit zoom avec mailles, moyen avec7.
cluster/polygones, grand avec points précis.
Tenter d'améliorer les performances de cor_area_synthese :8.

Ajouter une colonne area_type_code contenant le code du type de zone géo1.
correspondant à l'id_area.
Mettre en place un partitionnement de la table basé sur area_type_code2.
Créer une vue matérialisée mettant en cache les données agrégées par maille pour3.
l'affichage par défaut (nombre d'observation par maille sans filtre)

Tester l'utilisation d'une table des géométries de l_areas subdivisées (st_subdivide) pour9.
essayer l'agrégation par communes.
Tester l'utilisation d'une vue matérialisée correctement indexé et agrégeant l'ensemble des10.
informations nécessaires aux requêtes de la Synthese

https://docs.postgresql.fr/15/ddl-partitioning.html

2026/01/31 12:19 3/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

Tests d'amélioration de l'affichage sur la carte

Principes d'amélioration

Pour l'amélioration de l'affichage cartographique, nous envisageons de :

paralléliser l'accès aux données
diminuer le volume de données restitué par chaque appel de web service
agréger les données à petite échelle

Afin de paralléliser l'accès aux données, il est nécessaire de remplacer le "mono" webservice REST
GeoJson actuel par un web service de type Tile Map Service (TMS) fournissant des données vectorisés
sous forme de tuiles.

Le format de web service TMS, dont le standard est décrit par osgeo.org dans le doc Tile Map Service
Specification, est utilisé par Google Map, mais également par OpenSteetMap dans une version
simplifiée.
Ce type de web service doit pouvoir être appelé plusieurs fois en parallèle si l'on souhaite accélérer le
rendu sur une carte web. Pour cela l'utilisation d'URLs HTTPS supportant HTTP2, avec des sous-
domaines différents (a., b., c., etc) doit permettre aux navigateurs de réaliser un maximum de
requêtes simultanées.
La possibilité de générer parallèlement plusieurs tuiles vecteurs, de dimension réduite et dont le
contenu varie en fonction du niveau de zoom devrait accélérer le rendu.

L'utilisation de tuiles vecteurs permet de maintenir l'interaction avec les objets retournés comme
c'est le cas actuellement avec le GeoJson. Il existe deux format de tuiles vecteurs envisageable :
Mapbox Vector Tile (MVT) ou GeoJson. Mais la quasi totalité des exemples et articles sur le web
concernent les tuiles MVT. Les tuiles geojson sont-elles moins intéressantes ?

Pour les petits niveau de zoom, nous utiliserons une technique d’agrégation permettant d'afficher une
grande quantité d'information. Nous essaierons de retourner des données agrégées par maille avec
une coloration des mailles en fonction du nombre d'observation contenues. Cela permettra de
garantir la lisibilité des données affichés.

L'utilisation de maille est un facteur important car c'est un objet géographique simple qui ne contient
que 5 points. Nous disposons également de mailles de différentes tailles 1, 5 et 10 km par défaut
dans GeoNature, ce qui permet de sélectionner la taille la mieux adaptée à son territoire et à la
quantité de données hébergée. Enfin, l'intersection de données avec des mailles en base de données
peut se faire à l'aide de la fonction Postgis ST_Intersects() mais également à l'aide de l'opérateur
bien plus performant && qui pour les géométries signifie "l'étendue recouvre ou touche".

Enfin, afin de réduire le volume de données à renvoyer par tuile, il est possible de simplifier la
géométrie des objets renvoyés. Dans le cadre du module Synthèse de GeoNature, cette possibilité est
envisageable mais n'aura pas forcément beaucoup d'intérêt. En effet, les mailles agrégeant les
données à petite échelle ne peuvent pas être plus simplifiées. Cette technique peut éventuellement
être utilisé pour simplifier les géométries d'observation de type polygone renvoyées à grande échelle.
Mais dans ce cas là, nous cherchons souvent à garder le maximum de précision.
Par contre, il peut être intéressant de simplifier le nombre de décimale des coordonnées des
géométries des observation. Avec 5 chiffres après la virgule, une coordonnées est précise au mètre. Il
semble donc intéressant de garder 5 (ou 6) chiffres maximum après la virgule.

https://www.crunchydata.com/blog/dynamic-vector-tiles-from-postgis
https://www.crunchydata.com/blog/dynamic-vector-tiles-from-postgis
https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://www.esri.com/arcgis-blog/products/data-management/mapping/strategies-to-effectively-display-large-amounts-of-data-in-web-apps/
https://www.esri.com/arcgis-blog/products/data-management/mapping/strategies-to-effectively-display-large-amounts-of-data-in-web-apps/

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

La parallélisation de l'accès aux données, leur vectorisation et leur agrégation par mailles devrait
rendre possible l'affichage d'une grande quantité de données à petite échelle.

Tuiles GeoJson

Il serait intéressant de maintenir le format GeoJson en proposant des tuiles vecteurs au format
"geojson". Les principaux avantages sont :

bon support du GeoJson par Leaflet
existence d'un plugin Leaflet Tilelayer GeoJson
le module Synthese de GeoNature exploite déjà ce format

Cependant, les défauts des tuiles GeoJson comparés aux tuiles MVT sont :

le poids des tuiles GeoJson (en texte) générées comparé à celui des tuiles PBF qui utilisent un
format binaire est plus important.
la quasi absence de ressource sur le web concernant la création de tuiles GeoJson.
le support des tuiles GeoJson n'est pas offert nativement par les principaux framework carto
web : Maplibre (pas de support), LeafLet (via le plugin Leaflet Tilelayer GeoJson), OpenLayers
(?).

Au niveau pratique, concernant la création de tuile GeoJson, Postgis semble offrir la possibilité de
découper des géométries en fonction d'un polygone donnée ("clip") à l'aide de la fonction
ST_Intersection(). Il semble également possible d'utiliser l'utilitaire ogr2ogr qui permet de
générer du GeoJson en redécoupant les géométrie données en fonction du contour d'une bbox.

Exemples de code pour créer des tuiles GeoJson :

Dirt-simple-postgis-http-api - GeoJson ⇒ en réalité, cela ne créé pas un geojson dont les
géométrie sont restreinte à la tuile mais renvoie toutes les géométrie intersectant la bbox de la
tuile demandée…

Tuiles Mapbox Vector Tile

Le principal format de tuiles vecteurs est le Mapbox Vector Tiles (MVT). Les URLs permettant de
récupérer ces tuiles se terminent souvent par l'extension ".mvt" mais l’extension ".pbf" est également
utilisée car comme expliqué dans le guide du standard MVT, les tuiles MVT sont encodées en
s'appuyant sur Google Protobufs (PBF).

Par contre, le format de fichier PBF d'OpenStreetMap utilise également Google Protobufs mais n'a rien
à voir au niveau de son implémentation avec le format utilisé pour les tuiles MVT.

Concernant la création de tuile MVT, Postgis supporte très bien ce format à l'aide des fonctions
ST_TileEnvelope(), ST_AsMVTGeom() et ST_AsMVT().

Simplification des géométries à l'aide de Postgis

https://github.com/glenrobertson/leaflet-tilelayer-geojson
https://github.com/mapbox/mapbox-gl-js/issues/7912
https://postgis.net/docs/ST_Intersection.html
https://github.com/5chdn/geojson-map-tiler/blob/master/tiler/geojson.rb#L104C164-L104C167
https://gdal.org/programs/ogr2ogr.html#cmdoption-ogr2ogr-clipsrc
https://github.com/tobinbradley/dirt-simple-postgis-http-api/blob/master/routes/geojson.js
https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/
https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/#format
https://github.com/google/protobuf
https://postgis.net/docs/ST_TileEnvelope.html
https://postgis.net/docs/ST_AsMVTGeom.html
https://postgis.net/docs/ST_AsMVT.htm
https://wiki-sinp.cbn-alpin.fr/lib/exe/fetch.php?tok=5d8cf5&media=https%3A%2F%2Fprod-api.symphony.is%2Fassets%2F07-screen-shot-2021-11-14-at-093219-2.webp

2026/01/31 12:19 5/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

Comme indiqué précédemment, il peut être utile de simplifier les géométries retournée en réduisant
le nombre de chiffre après la virgule des coordonnées en utilisant la fonction Postgis
ST_SnapToGrid(). Pour garder une précision métrique, 5 chiffres après la virgule suffisent :
ST_SnapToGrid(geom, 0.00001).

S'il s'avèrent nécessaire de simplifier des géométries complexes (Communes, Départements, zones
de protection…), il faut utiliser des fonctions qui préservent la topologie des géométries pour éviter
de créer des géométries invalides. C'est le cas de la fonctions Posgis
ST_SimplyPreserveTopology.

Le web service retournant ces géométrie doit pouvoir activer et augmenter la simplification des
géométrie en fonction du niveau zoom. L'utilisation de la formule suivante dans les requêtes est très
intéressante car cela permet de simplifier automatiquement les géométries en fonction du niveau de
zoome de façon que les écarts apparaissant entre 2 géométries contiguës ne soient pas visibles :
ST_SimplyPreserveTopology(geom, 0.7 / (2 ^ <zoom-level>)).

Framework carto web et tuiles vecteurs

Actuellement, nous utilisons Leaflet comme framework carto web. Il est simple, peu verbeux et
fournie jusqu'à présent toutes les fonctionnalités carto dont GeoNature à besoin. Malheureusement, il
ne supporte pas nativement les tuiles vecteurs. Il est possible d'utiliser un plugin pour cela mais il en
existe de nombreux qui ne sont pas tous bien maintenu. Nous listerons les plugins Leaflet existant
permettant l'utilisation de tuiles vecteurs, détermineront s'ils sont toujours actifs et évaluerons s'ils
sont bien maintenus.

Enfin, nous testerons la solution dont le rendu des tuiles vecteur est le plus performant dans un
navigateur web. Même si cela impliquerait une modification importante du code de GeoNature, les
possibilités offertes par ces récents frameworks supportant de nouvelle techniques d'affichage web
pourraient s'avérer valoir l'investissement. Nous testerons l'utilisation de tuiles vecteur avec le plus
intéressant et évaluerons sa facilité d'intégration avec Angular.

Besoins

Dans le cas d'un plugin pour Leaflet, les besoins sont :

supporter l'affichage de tuiles "vecteur" au format Mapbox Vector Tiles (MVT)
être activement maintenu
être le plus performant possible pour le rendu de tuiles vecteur dans un navigateur web

Dans le cas d'un framework carto différent de Leaflet, en plus des besoins listés précédemment, il
doit :

supporter l'affichage de tuiles "raster" au format TMS fournie par OpenStreetMap
supporter l'affichage de données issues de web service WMS
supporter l'affichage de GeoJson
permettre l'édition en ligne (point, polygone) directement ou via un plugin

https://postgis.net/docs/ST_SnapToGrid.html
https://postgis.net/docs/ST_SimplifyPreserveTopology.html
https://symphony.is/about-us/blog/boosting-postgis-performance
https://symphony.is/about-us/blog/boosting-postgis-performance

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

Plugins Leaflet ajoutant le support des tuiles vecteur

Leaflet consacre une catégorie pour les plugins apportant le support des tuiles vecteurs. Les plugins
non libres ou s'appuyant sur une API propriétaire ne seront pas pris en compte. Liste des plugins
apportant le support des tuiles MVT ou GeoJson à Leaflet classé dans l'ordre décroissant
d'activité/maintenance :

Nom Dépôt Formats
supportés

Dernière
version

Date
dernière
release

Date
dernier
commit

Licence

Maplibre GL Leaflet maplibre/maplibre-gl-leaflet MVT v0.0.20
19

septembre
2023

6 juin
2024 ISC

Leaflet.VectorTileLayer jkuebart/Leaflet.VectorTileLayer MVT v0.16.0 10 octobre
2023

20 avril
2024

BSD-3-Clause
license

Protomaps Leaflet protomaps/protomaps-leaflet MVT,
PMTiles - - 9 mai

2024
BSD-3-Clause
license

Vector Grid Leaflet/Leaflet.VectorGrid MVT v1.3.0 28 août
2017

1er
septembre

2021

THE BEER-
WARE
LICENSE

Leaflet Tilelayer
GeoJson glenrobertson/leaflet-tilelayer-geojson GeoJson v1.0.2 11 octobre

2016
21 octobre

2016
THE BEER-
WARE
LICENSE

Hoverboard summer4096/hoverboard MVT,
GeoJson v1.1.3 27 mars

2015
13 mai
2015 ?

L'utilisation de Leafleft avec le plugin Maplibre-Gl-Leaflet est la solution qu'il faudrait retenir car la
communauté autour de MapLibre (fork de Mapbox GL JS) semble être bien active. Ceci dit les plugins
jkuebart/Leaflet.VectorTileLayer et protomaps/protomaps-leaflet semblent être des solutions
envisageables.

Framework carto web avec support natif des tuiles vecteur

Les frameworks carto web suivant possèdent un support des tuiles vecteurs sans l'ajout d'un plugin
sont :

MapLibre GL1.
OpenLayers2.

Conclusion

Nous testerons l'utilisation du framework MapLibre GL car son développement a été basé dès l'origine
sur l'utilisation de tuiles vecteur. C'est celui qui est sensé nous offrir les meilleures performances lors
de l'utilisation de tuiles vecteur.

Ce test sera réalisé en développant un module GeoNature spécifique "Syntests". Cela permettra
d'évaluer la facilité d'intégration du framework à Angular. Nous pourrons aussi concentrer nos sur
l'optimisation des performances du rendu des observations issues de la table synthese de
GeoNature sans être contraint par l'implémentation actuelle du module "Synthese".

https://leafletjs.com/plugins.html#vector-tiles
https://github.com/maplibre/maplibre-gl-leaflet
https://gitlab.com/jkuebart/Leaflet.VectorTileLayer/
https://github.com/protomaps/protomaps-leaflet
https://github.com/Leaflet/Leaflet.VectorGrid
https://github.com/glenrobertson/leaflet-tilelayer-geojson/
https://github.com/summer4096/hoverboard
https://leafletjs.com/
https://github.com/maplibre/maplibre-gl-leaflet
https://gitlab.com/jkuebart/Leaflet.VectorTileLayer/
https://github.com/protomaps/protomaps-leaflet
https://maplibre.org/maplibre-gl-js/docs/
https://openlayers.org/
https://github.com/cbn-alpin/gn_module_syntests/tree/develop

2026/01/31 12:19 7/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

Tests de serveurs de tuiles vecteurs

Actuellement, il n'y a pas d'API fournissant de tuiles vecteurs de manière équivalente aux tuiles raster
fournies par OpenStreetMap. Cela nécessite donc de maintenir l'affichage du fond
cartographique de base via des tuiles raster.

Il existe deux grands types de serveurs de tuiles vecteurs :

les serveurs de fonds cartographiques : une tuile contient un très grand nombre de données
différentes afin de générer un fond cartographique.
les serveurs de couches : une tuile contient uniquement les données de la couche
demandée/configurée.

Serveurs de tuiles pour fonds cartographiques

Il existe des serveurs de tuiles vecteurs open source et/ou gratuit qui sont auto-hébergeables. Par
exemple :

Mbtileserver : en Go. Utilise des tuiles issues de fichiers mbtiles.
Tileserver-GL : open source et gratuit. Utilise des tuiles issues de fichiers mbtiles.
Maptiler Server : très simple à installer, à configurer et utiliser. Il est compatible Linux mais il
nécessite une licence payante pour une utilisation en production.
Voir la liste de serveurs de tuiles vecteurs maintenue par Mapbox

L'utilisation de ces serveurs de tuiles vecteurs nécessite de les héberger sur son propre serveur. Cela
implique :

l'installation, la configuration et la maintenance du serveur
de disposer de suffisamment d'espace disque : de quelques dizaines à plusieurs centaines de
Go suivant les niveaux de zoom supportés et la taille de la carte à rendre (pays, continent,
planète).

Dans le cadre de GeoNature, l'utilisation de ce type de serveurs peut être intéressant si le framework
carto web utilisé pour gérer les cartes supporte bien les tuiles vecteurs. Cela ouvre la voie a de
nouveaux usages : vue 3D (intéressant pour mieux visualiser les pentes, vallée…), changement de
langue des textes de la carte, changement de style instantané du fond carto en fonction des usages
(nuit, nature, …). Dans le cas contraire, il vaut mieux privilégier l'utilisation de tuiles raster.

Pour les cartes de GeoNature, il pourrait être intéressant de fournir des tuiles vecteurs pour le
fond cartographique spécialement conçu pour les zones non urbanisés. Ce style d'affichage
est nommé "terrain" ou "outdoor". Il existe des fichiers de styles open source pour ce type
d'affichage. Ce style nécessite l'utilisation de plusieurs types de tuiles :

raster-dem : pour les ombres portés du relief
vecteurs : pour les contours et les autres éléments

Pour les contours (lignes de niveaux) et le relief, il est possible d'utiliser les fichiers fournis par Makina
Corpus et qui concernent la France Métropolitaine. Voir également l'article concernant la génération
des ces tuiles.

https://medium.com/@frederic.rodrigo/web-mapping-comparing-vector-tile-servers-from-postgres-postgis-405055e69084
https://github.com/consbio/mbtileserver
https://github.com/maptiler/tileserver-gl
https://www.maptiler.com/server/
https://github.com/mapbox/awesome-vector-tiles?tab=readme-ov-file#servers
https://openmaptiles.org/styles/#maptiler-terrain
https://github.com/openmaptiles/maptiler-terrain-gl-style
https://github.com/openmaptiles/maptiler-terrain-gl-style
https://www.data.gouv.fr/fr/datasets/bd-alti-r-25-m-tuiles-pour-courbes-de-niveau-et-ombrage-dynamiques-1/
https://www.data.gouv.fr/fr/datasets/bd-alti-r-25-m-tuiles-pour-courbes-de-niveau-et-ombrage-dynamiques-1/
https://makina-corpus.com/sig-webmapping/optimisation-tuiles-mnt-rgb-ombrage-dynamique-mapbox-gl-maplibre-gl
https://makina-corpus.com/sig-webmapping/optimisation-tuiles-mnt-rgb-ombrage-dynamique-mapbox-gl-maplibre-gl

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

Serveurs de tuiles pour couches de données spécifiques

Ces serveurs s'appuie sur une base de données Postgis existante pour générer les tuiles vecteurs. La
configuration de ces serveurs prévoie de pouvoir associer une requête SQL à chaque couche de tuiles
vecteurs que l'on souhaite générer.

Serveurs de couches intéressant :

Tegola : en Go, open source et gratuit. Génère des tuiles depuis Postgresql ou des fichiers
GPKG.
Martin
pg_tileserver

Dans le cadre de GeoNature, ce type de serveur peut être intéressant à installer si l'on souhaite
générer des couches de tuiles vecteurs spécifiques à des données hébergées dans la base. Par
exemple, les différents types de zones géo présentent dans la table ref_geo.l_areas pourraient
être proposé sous forme de web services de tuiles vecteurs activable ou pas en fonction des besoins.
Il est possible d'imaginer aussi des web services d’agrégation de données basés sur des vues :
intensité de prospection, nombre d'observations, diversité spécifiques…

Par contre, les services de tuiles en question ne doivent pas être assujetti à l'utilisation de filtres
dépendant du choix de l'utilisateur via l'interface. Il faut pouvoir fournir les tuiles de la même façon
quelque soit la personne en faisant la demande…

Web service de tuiles vecteurs sur mesure

Dans notre cas, il semble plus intéressant de construire des web services de tuiles vecteurs
en s'appuyant sur les fonctionnalités offertes par Postgis. Les données renvoyées dans les
tuiles de la Synthese" seront dépendantes :

de l'utilisateur en faisant la demande
de nombreux filtres au choix de l'utilisateur

Posgis fournit des fonctions permettant de faciliter la création de tuile MVT :

ST_TileEnvelope(z, x, y) (doc) : permet de crée un polygone rectangulaire (bbox) dans
le SRID 3857 en fonction du niveau de zoom, du x et du y d'une URL d'un web service TMS.
ST_AsMVTGeom() (doc) : transforme une géométrie dans l'espace de coordonnées d'une tuile
MVT (Mapbox Vector Tile), en la coupant aux limites de la tuile si nécessaire.
UNION et ST_AsMVTGeom() : permettent de stocker plusieurs couches (layers) de géométries
"MVT" dans la même tuile.
ST_AsMVT() (doc) : fonction d'agrégation qui renvoie une représentation binaire Mapbox
Vector Tile d'un ensemble de lignes correspondant à une couche de tuiles.

Exemple de requêtes créant une tuile vecteur basée sur la table ref_geo.l_areas de GeoNature
pour les valeurs zoom = 16, x = 33877 et y = 23672 :

WITH bounds AS (
 SELECT ST_TileEnvelope(16, 33877, 23672) AS envelope

https://github.com/go-spatial/tegola
https://github.com/maplibre/martin
https://github.com/CrunchyData/pg_tileserv
https://postgis.net/docs/ST_TileEnvelope.html
https://wiki.openstreetmap.org/wiki/TMS
https://postgis.net/docs/ST_AsMVTGeom.html
https://medium.com/@shahzadbacha.gis/composite-mvt-tiles-with-postgis-4b30d6c9f510
https://postgis.net/docs/ST_AsMVT.html

2026/01/31 12:19 9/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

), mvtgeom AS (
 SELECT ST_AsMVTGeom(ST_Transform(t.geom, 3857), b.envelope) AS geom,
 t.id_area,
 t.area_code,
 t.area_name
 FROM ref_geo.l_areas AS t, bounds AS b
 WHERE ST_Intersects(t.geom, ST_Transform(b.envelope, 2154))
 AND t.id_type = ref_geo.get_id_area_type('COM')
)
SELECT ST_AsMVT(mvtgeom.*) FROM mvtgeom ;

Exemples de création de tuiles vecteurs en Python à l'aide de Postgis :

Github :
pramsey/minimal-mvt
jbdesbas/vectipy
Oslandia/postile
Fast Vector - Python FastApi, Postgis

Articles :
Vector tiles, Postgis et OpenLayers
Serving Mapbox Vector Tiles with Postgis, Nginx and Python backend
Restricted Vector Tile access with FastAPI & PostGIS
Composite MVT tiles with Postgis

Principe des tests de performance

Nous avons réalisé plusieurs tests à l'aide du module un module GeoNature spécifique "Syntests". Il
nous a permis d'encapsuler rapidement l’exécution de requêtes SQL afin de comparer leur rendu sous
forme de tuiles vecteurs affichées à l'aide du framework carto web Maplibre GL.

Nous avons également utilisé les données de la base du SINP AURA qui comprend 23,5 millions
d'observations dans la table synthese et 378 millions de lignes dans la table cor_area_synthese.
Nous avons pu ainsi tester l'efficacité des tuiles vecteurs sur une base de données comprenant un
nombre conséquent d'observations.

Comparaison SRID 2154 et 4326

Les résultats de la comparaison du nombre de données récupérés et des temps d'obtention entre
l'utilisation du SRID 4326 et 2154 ne montre pas de différences majeures. Mais l'utilisation du SRID
4326 semble légèrement plus rapide et en outre demande moins de traitement pour son utilisation
avec le format GeoJson.

Conclusion : privilégier le SRID 4326 pour les champs de type géométrie.

Comparaison opérateur && et st_intersects avec index GIST

Le test de comparaison des opérateurs ''&&'' et de la fonction ''ST_Intersects'' avec un index GIST
montre que l'opérateur && est plus rapide. Cependant il ne peut être utilisé qu'avec des géométries

https://github.com/pramsey/minimal-mvt/blob/master/minimal-mvt.py
https://github.com/jbdesbas/vectipy/blob/main/app/routes.py
https://github.com/Oslandia/postile
https://github.com/mkeller3/FastVector
https://medium.com/tantotanto/vector-tiles-postgis-and-openlayers-258a3b0ce4b6
https://www.zimmi.cz/posts/2017/serving-mapbox-vector-tiles-with-postgis-nginx-and-python-backend/
https://gis-ops.com/fastapi-auth-vector-tiles/
https://medium.com/@shahzadbacha.gis/composite-mvt-tiles-with-postgis-4b30d6c9f510
https://github.com/cbn-alpin/gn_module_syntests/tree/develop

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

de type "bounding box" (des rectangles).

Conclusion : privilégier l'opérateur && quand c'est possible sinon utiliser st_intersects.

Comparaison opérateur && et st_intersects avec index BRIN

Le test d'utilisation d'un index de type BRIN sans trier les lignes sur la colonne géométrique utilisée
montre des temps d'exécution plus long qu'avec l'index GIST. Ces temps sont plus longs pour
l'opérateur && comme pour la fonction ST_Intersects.

Conclusion : utiliser un index GIST sur le champ contenant les géométries des observations de la
Synthese.

Comparaison index GIST et SP-GIST

En suivant les informations fournies par ce document " Dalibo - Indexation avancée", nous avons mis
en place un index de type SP-GIST sur le champ géométrie de la Synthese. Les résultats de la requête
utilisée montre un léger avantage pour l'index de type SP-GIST.

Conclusion : utiliser un index SP-GIST pour améliorer les performances sur la colonne géométrie de
la Synthese.

Comparaison agrégation via table relation et via intersection

La comparaison de l'agrégation des observations via l'utilisation de la table cor_area_synthese ou
via l'opération spatiale && et des index SP-GIST mais bien en évidence qu'il est plus performant
d'utiliser une table relationnelle pour pré-stocker les intersections.

L’agrégation par maille de 10km à partir du zoom 8 met 6 secondes pour la table
cor_area_synthese et 52 secondes avec l'intersection spatiale ! Et cela malgré les 378 millions de
lignes de la table cor_area_synthese.

Il faut donc maintenir l'utilisation de la table cor_area_synthese et chercher des solutions visant à
optimiser ce mécanisme :

Ajout d'une colonne indiquant le code du type de zone geo dans la table cor_area_synthese :
area_type_code

Partitionnement de la table basé sur le type de zone geo
Création d'une table de relation spécialisée pour les mailles M10 : id_synthese, id_area
Mise en cache du nombre d'observation par maille M10 : id_area, observation_nbr

Conclusion : pré-calculer et stocker dans une table les intersections de géométries.

Test de l'ajout d'un champ area_type_code à la table cor_area_synthese

https://public.dalibo.com/exports/formation/manuels/modules/j5/j5.handout.pdf

2026/01/31 12:19 11/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

La table cor_area_synthese comprenant un très grand nombre de lignes (378 millions dans notre
cas), il pourrait s'avérer plus performant de permettre à Postgresql d'éliminer un grand nombre
d'entre elles en spécifiant le type de la géométrie liée. Pour cela, nous proposons d'ajouter un champ
''area_type_code''. Nous avons également tester l'utilisation de différents index sur ce champ.

Conclusion : l'utilisation du champ area_type_code améliore les performances lorsqu'il est
utilisé avec un index 'btree(area_type_code, id_area).

Test vue matérialisée pour relations entre observations ''synthese'' et mailles M10

La création d'une vue matérialisée spécialisée pour stocker les relations entre observations
''synthese'' et mailles M10 a permis de tester son utilisation. Nous avons constaté des résultats très
proches de ceux obtenus avec le simple ajout du champ area_type_code sur la table
cor_area_synthese.

Conclusion : continuer d'utiliser cor_area_synthese plutôt que des vues matérialisées par type
de zones géoégraphiques.

Test de vues matérialisées pour mettre en cache le nombre d'observations ''synthese'' par
mailles

La création d'une première vue matérialisée m10_observation_nbr a permis de en cache le
nombre d'observations synthese par maille M10. La création d'une seconde vue matérialisée
observation_nbr a permis de mettre en cache le nombre d'observations synthese pour les
différents types de mailles (M10, M5 et M1).

Cela nous a permis de tester l'utilisation d'une vue contenant un nombre réduit de données,
uniquement pour les mailles 10km (table m10_observation_nbr), vis à vis de la vue contenant la
mise en cache du nombre d'observation pour l'ensemble des mailles (table observation_nbr).

Nous constatons bien que les requêtes effectuées sur a vue contenant la mise en cache de calcul
seulement pour les mailles M10 est plus rapide que celle contenant l'ensemble des mailles. Mais dans
les 2 cas et pour l'ensemble des requêtes, nous obtenons de très bon temps de réponse (moins de
0,1s). Même si l'utilisation d'une vue matérialisée spécifique a un type de maille est plus rapide, il
semble plus intéressant d'utiliser la vue matérialise prenant en compte l'ensemble des mailles car le
rafraîchissement des données d'une seule vue matérialisée est plus simple à gérer.

Par ailleurs, la mise en cache de calcul sur de très grande quantité de données et donc une solution
très satisfaisante pour générer des tuiles vecteurs. Leur affichage dans l'interface est très fluide.
Malheureusement, cette méthode peut être difficilement appliquée sur le module Synthese qui utilise
de nombreux filtres spécifiques et dont les résultats sont également dépendant des droits de
l'utilisateur.

Conclusion :

mettre les calculs (ex. COUNT) en "cache" dès que possible
trouver le juste milieu entre performance et facilité de maintenance

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

Test de la création d'une table "cor_area_synthese" partitionnée

Ressources :

PostgreSQL : évolution du partitionnement de 9.6 à 12 (1/2) : Capdata team, 14 novembre
2019.
PostgreSQL : évolution du partitionnement de 9.6 à 12 (2/2) : Capdata team, 22 novembre
2019.

Nous avons créée une table partitionnée ''cor_area_synthese''. Cela nous a permis d'obtenir des
informations sur sa composition, effectuer des tests dessus et mieux appréhender le principe du
partitionnement.

Les résultats sur la mise en cache des données pour l'ensemble des mailles vis à vis d'un seul type
(M10) a montré que la requête s'exécutant sur un seul type était pls rapide. Le partitionnement
subdivisant la table initiale en une multitude de table par type, nous pouvons penser que cela pourra
améliorer les résultats.

Notes :

Il n'est pas possible de réutiliser une table standard pour la partitionnée, il faut recréer une
nouvelle table partitionnée dés sa création.
Il est nécessaire d'ajouter une colonne area_type_code pour l'utiliser comme origine du
partitionnement.
Toutes les colonnes présentes dans les partitions doivent faire partie de la clé primaire.
Il peut être intéressant d'activer le partitionnement d'une table lorsque la taille de celle-ci
dépasse la quantité de mémoire vive disponible…

Conclusions :

l'utilisation du partitionnement ne semble pas plus performant que l'ajout d'un champ
area_type_code sur la table cor_area_synthese. Par contre, il facilite la gestion des
données de la table cor_area_synthese. Avec l'augmentation du nombre d'observations
dans la synthese, le partitionnement pourrait s'avérer plus performant à terme.
Il est envisageable de gérer le partitionnement de la table cor_area_synthese sans
toucher au code de GeoNature à partir du moment où la table cor_area_synthese
possède un champ area_type_code.

Test de la fonction st_subdivide()

Dans le cadre de la création d'une table cor_area_synthese partitionnée, nous avons utilisé la
fonction Postgis st_subdivide() afin de créer une table contenant une ensemble de géométries
simplifiées pour chaque géométrie complexe (toutes sauf mailles) présentent dans la table l_areas.

Les intersections effectuées à l'aide de la fonction st_intersects() se sont avérées largement plus
rapide lorsqu'elles sont exécutées sur les géométries simplifiées de cette table et cela même si elles
en contient un plus grand nombre. Voir cette article de Paul Ramsey sur le sujet.

Conclusion : utiliser st_intersects() sur des géométries complexes simplifiées via

https://blog.capdata.fr/index.php/postgresql-evolution-du-partitionnement-de-9-6-a-12-1-2/
https://blog.capdata.fr/index.php/postgresql-evolution-du-partitionnement-de-9-6-a-12-2-2/
https://postgis.net/docs/ST_Subdivide.html
https://postgis.net/docs/ST_Intersects.html
https://blog.cleverelephant.ca/2019/11/subdivide.html

2026/01/31 12:19 13/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

st_subdivide()

Test utilisation table "cor_area_synthese" sans lien vers la "synthese"

Nous avons voulu tester une requête s’exécutant seulement sur une seule table pour évaluer l'impact
des jointures. La requête effectuée seulement sur la table cor_area_synthese sans relation vers la
table synthese divise le temps d'exécution par 5 !

Par ailleurs, nous avons confirmé dans le cadre de l'utilisation d'une autre base de données (Simethis)
que des requêtes effectuées sur une seule table contenant des millions d'observations sans aucune
jointure permet de générer un GeoJson agrégeant plusieurs millions d'observations (~8 millions) sous
forme de mailles sur une surface correspondant à une région pour temps d'exécution de 30 secondes
!

Conclusion : réaliser des requêtes sur une seule table bien indexée !

Test requêtes Synthese sur VM indexée

Le test précédent a montré une très grande efficacité et nous avons pu la confirmé dans le cadre de
l'utilisation d'une autre base de données (Simethis). Les requêtes effectuées sur une seule table
contenant des millions d'observations sans aucune jointure permet de générer un GeoJson agrégeant
plusieurs millions d'observations (~8 millions) sous forme de mailles sur une surface correspondant à
une région pour temps d'exécution de 30 secondes !

Nous avons commencer à tester cela en générant une vue matérialisé v_synthese_for_web_app bien
indexée. Ensuite, nous avons commencé à modifié le fichier query_select_sqla.py dans lequel la
majorité des requêtes effectuées sur la Synthese sont générées.

Nous avons lancer des interrogations dans la Synthese en utilisant les filtres par taxon ou par
commune. Une fois les requêtes modifiées pour n'utiliser que les champs de nouvelle VM et après
l'utilisation de EXPLAIN pour vérifier leur comportement, nous avons pu constaté une amélioration
importante des performances !

Par ailleurs, cette approche permet de réutiliser un mécanisme déjà en place dans le module
Synthese, l'utilisation de la vue v_synthese_for_web_app. L'idée ici est donc de limiter toutes les
requêtes à cette vue. Vue qui peut devenir matérialisée pour exploiter des index sur bases de
données GeoNature à forte volumétrie. Cette solution demande finalement qu'un minimum de
modification de code.

Nous pouvons continuer à utiliser du GeoJson pour le rendu à partir du moment où les observations
sont agrégées par mailles dès que leur nombre devient trop important à afficher sur la carte. Une
bascule automatique vers ce type d'affichage doit être mise en place également.

Conclusion : exécuter des requêtes pour le module Synthese uniquement sur une vue
matérialisée v_synthese_for_web_app bien indexée.

Liste des améliorations

https://github.com/PnX-SI/GeoNature/blob/develop/backend/geonature/core/gn_synthese/utils/query_select_sqla.py

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

L'ensemble de ces tests nous permettent lister les éléments d'amélioration des performances suivant,
utiliser :

le SRID 4326 pour les intersections
l'opérateur && plutôt que st_intersects si possible
un index SP-GIST si les géométrie ne se chevauchant pas, sinon GIST plutôt que BRIN.

Pour synthese ⇒ SP-GIST, pour l_areas ⇒ GIST.
une table de relation (cor_area_synthese) plutôt qu'une recherche spatiale.

ajout d'une colonne area_type_code sur cor_area_synthese.
st_intersects() sur des géométries complexes simplifiées via st_subdivide().
une table/VM de cache stockant le nombre d'observation par maille pour gérer l'affichage par
défaut sans filtre.

sinon utiliser seulement la table cor_area_synthese (sans relation avec la table
synthese) pour les requêtes avec des tailles de mailles appropriées au niveau de zoom
pour gérer l'affichage par défaut sans filtre.

des requêtes s'exécutant uniquement sur une seule table bien indexée sans jointure.
des requêtes pour le module Synthese s'exécutant uniquement sur une vue matérialisée
v_synthese_for_web_app bien indexée.

Conclusion sur l'utilisation des tuiles vecteurs

Concernant l'amélioration des performances du module Synthese, les différents tests effectués nous
ont permis de nous rendre compte que l'utilisation des tuiles vecteurs n'était pas à elle seule
une solution concluante. A certain niveau de zoom, lorsque les bounding box des tuiles vecteurs se
répartissent bien les mailles d’agrégation ou les observations affichées la parallélisation des requêtes
effectuées en base est intéressante.
Malheureusement, cette parallélisation des requêtes n'est pas valable à tous les niveaux de zoom.
Avec les petits zoom, nous avons peu de requêtes parallélisées et elles s'exécutent sur de très grande
surface et quantité de données. Les performances sont dégradées.

En outre, pour que l'affichage sur la carte soit fluide et garantisse de bonnes conditions d'utilisation à
l'utilisateur final, il est nécessaire que la création des tuiles s'effectue très rapidement. À l'exception
des requêtes exécutées sur une table mettant en cache le nombre d'observation par mailles, il n'a
pas été possible de générer les tuiles assez vite pour garantir une impression de fluidité lors de
l'affichage des tuiles sur la carte.

Conclusion sur le framework MapLibre GL

Le framework carto MapLibre GL a été facilement intégré à Angular lors de son utilisation dans le
module Syntests. Une modification minime du cœur de GeoNature a toutefois été nécessaire. Nous
avons pu constaté qu'il répondait bien à tout les besoins attendus d'une nouveau framework carto
utilisable dans le cadre de GeoNature. Il apporte de nouvelles fonctionnalités très intéressantes :
affichage du relief, rotation de la carte, traduction instantanée des libellées des cartes, changements
de thèmes du rendu carto… C'est donc un choix très intéressant pour le remplacement des Leaflet.

Ceci dit, ce framework étant assez récent, il ne possède pas tous les plugins offerts par Leaflet.
L'ajout des fonctionnalités d'édition de la carte s'est avéré ainsi plus complexe qu'avec Leaflet.

2026/01/31 12:19 15/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

Au vue de la forte intégration de Leaflet aux composant générique du frontend de GeoNature et au
fait que l'utilisation des tuiles vecteurs ne résolvent pas les problèmes de performance, la bascule
vers ce nouveau framework ne semble pas nécessaire. Il semble donc plus pertinent de continuer à
utiliser Lealflet avec un rendu des observations à l'aide de GeoJson.

Conclusion générale

Nous proposons d'améliorer les performances du module Synthese en :

séparant les web services des principales fonctionnalités du module (carte, liste paginée,
export).
créant un web service paginée côté serveur pour la liste des observations affichées sous forme
de tableau
s'appuyant sur les mécanismes utilisés dans le module Export (limitation de l'utilisation
mémoire), une génération de l'export exécuté en arrière plan (tâche Celery) et l'utilisation des
notification à l'utilisateur pour les téléchargements
utilisant une seule VM bien indexée pour exécuter toutes les requêtes SQL de la Synthese
maintenant l'utilisation de Leaflet et du GeoJson
vérifiant systématiquement les performances des requêtes à l'aide de EXPLAIN et son outil de
visualisation ou d'outils de statistiques comme pg_stat_statements
en basculant automatiquement sur une agrégation par mailles des observations en fonction du
nombre d'observation à afficher sur la carte

Annexes

Annexe 1 - Comparaison SRID 4326 et 2154

-- 14, 8372, 5916 -- 10 row(s) fetched - 0,007s, on 2024-03-22 at 17:52:27
-- 13, 4185, 2957 -- 45 row(s) fetched - 0,042s (0,001s fetch), on
2024-03-22 at 17:46:28
-- 12, 2092, 1478 -- 545 row(s) fetched - 0,051s (0,014s fetch), on
2024-03-22 at 17:55:10
-- 11, 1046, 739 -- 2223 row(s) fetched - 0,152s (0,044s fetch), on
2024-03-22 at 17:54:35
-- 10, 523, 369 -- 18639 row(s) fetched - 1s (0,283s fetch), on
2024-03-22 at 17:54:54
WITH tile AS (
 SELECT ST_TileEnvelope(12, 2092, 1478) AS envelope
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
observations AS (
 SELECT

https://explain.dalibo.com/
https://explain.dalibo.com/

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 st_snaptogrid(s.the_geom_4326, 0.00001) AS geom,
 ST_Dimension(s.the_geom_local) AS dimension,
 round(ST_Perimeter(s.the_geom_local)) AS perimeter,
 s.id_synthese AS id,
 s."precision"
 FROM gn_synthese.synthese AS s
 JOIN bounds AS b
 ON ST_Intersects(b.envelope_4326, s.the_geom_4326)
 WHERE round(ST_Perimeter(s.the_geom_local)) <= 4000
)
SELECT
 ST_Transform(o.geom, 3857),
 o.dimension,
 o.perimeter,
 COUNT(o.id) AS nbr,
 json_agg(o.id) AS ids
FROM observations AS o
GROUP BY o.geom, o.dimension, o.perimeter ;

-- 14, 8372, 5916 -- 13 row(s) fetched - 0,012s (0,001s fetch), on
2024-03-22 at 17:51:53
-- 13, 4185, 2957 -- 47 row(s) fetched - 0,045s (0,001s fetch), on
2024-03-22 at 17:52:51
-- 12, 2092, 1478 -- 564 row(s) fetched - 0,076s (0,015s fetch), on
2024-03-22 at 17:53:16
-- 11, 1046, 739 -- 2272 row(s) fetched - 0,229s (0,048s fetch), on
2024-03-22 at 17:53:33
-- 10, 523, 369 -- 18886 row(s) fetched - 1s (0,321s fetch), on
2024-03-22 at 17:53:50
WITH tile AS (
 SELECT ST_TileEnvelope(10, 523, 369) AS envelope
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 2154) AS envelope_2154
 FROM tile AS t
),
observations AS (
 SELECT
 s.the_geom_local AS geom,
 ST_Dimension(s.the_geom_local) AS dimension,
 round(ST_Perimeter(s.the_geom_local)) AS perimeter,
 s.id_synthese AS id,
 s."precision"
 FROM gn_synthese.synthese AS s
 JOIN bounds AS b
 ON ST_Intersects(b.envelope_2154, s.the_geom_local)
 WHERE round(ST_Perimeter(s.the_geom_local)) <= 4000

2026/01/31 12:19 17/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

)
SELECT
 ST_Transform(o.geom, 3857),
 o.dimension,
 o.perimeter,
 COUNT(o.id) AS nbr,
 json_agg(o.id) AS ids
FROM observations AS o
GROUP BY o.geom, o.dimension, o.perimeter ;

Annexe 2 - Comparaison opérateur && et st_intersects avec index GIST

DROP INDEX IF EXISTS gn_synthese.idx_synthese_the_geom_4326_brin;

CREATE INDEX i_synthese_the_geom_4326 ON gn_synthese.synthese USING GIST
(the_geom_4326) ;

-- 14, 8372, 5916 -- 10 row(s) fetched - 0,022s (0,001s fetch), on
2024-03-22 at 18:13:39
-- 13, 4185, 2957 -- 45 row(s) fetched - 0,046s (0,001s fetch), on
2024-03-22 at 18:14:47
-- 12, 2092, 1478 -- 545 row(s) fetched - 0,058s (0,013s fetch), on
2024-03-22 at 18:14:30
-- 11, 1046, 739 -- 2223 row(s) fetched - 0,179s (0,044s fetch), on
2024-03-22 at 18:15:06
-- 10, 523, 369 -- 18639 row(s) fetched - 1s (0,288s fetch), on
2024-03-22 at 18:15:21
WITH tile AS (
 SELECT ST_TileEnvelope(10, 523, 369) AS envelope
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
observations AS (
 SELECT
 st_snaptogrid(s.the_geom_4326, 0.00001) AS geom,
 ST_Dimension(s.the_geom_local) AS dimension,
 round(ST_Perimeter(s.the_geom_local)) AS perimeter,
 s.id_synthese AS id,
 s."precision"
 FROM gn_synthese.synthese AS s
 JOIN bounds AS b
 ON ST_Intersects(b.envelope_4326, s.the_geom_4326)
 WHERE round(ST_Perimeter(s.the_geom_local)) <= 4000
)
SELECT
 ST_Transform(o.geom, 3857),

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 o.dimension,
 o.perimeter,
 COUNT(o.id) AS nbr,
 json_agg(o.id) AS ids
FROM observations AS o
GROUP BY o.geom, o.dimension, o.perimeter ;

-- 14, 8372, 5916 -- 10 row(s) fetched - 0,004s (0,001s fetch), on
2024-03-22 at 18:15:52
-- 13, 4185, 2957 -- 46 row(s) fetched - 0,010s (0,002s fetch), on
2024-03-22 at 18:16:04
-- 12, 2092, 1478 -- 545 row(s) fetched - 0,043s (0,013s fetch), on
2024-03-22 at 18:16:17
-- 11, 1046, 739 -- 2223 row(s) fetched - 0,162s (0,044s fetch), on
2024-03-22 at 18:16:43
-- 10, 523, 369 -- 18640 row(s) fetched - 0,954s (0,419s fetch), on
2024-03-22 at 18:16:57
WITH tile AS (
 SELECT ST_TileEnvelope(10, 523, 369) AS envelope
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
observations AS (
 SELECT
 st_snaptogrid(s.the_geom_4326, 0.00001) AS geom,
 ST_Dimension(s.the_geom_local) AS dimension,
 round(ST_Perimeter(s.the_geom_local)) AS perimeter,
 s.id_synthese AS id,
 s."precision"
 FROM gn_synthese.synthese AS s
 JOIN bounds AS b
 ON b.envelope_4326 && s.the_geom_4326
 WHERE round(ST_Perimeter(s.the_geom_local)) <= 4000
)
SELECT
 ST_Transform(o.geom, 3857),
 o.dimension,
 o.perimeter,
 COUNT(o.id) AS nbr,
 json_agg(o.id) AS ids
FROM observations AS o
GROUP BY o.geom, o.dimension, o.perimeter ;

2026/01/31 12:19 19/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

Annexe 3 - Comparaison opérateur && et st_intersects avec index BRIN

DROP INDEX gn_synthese.i_synthese_the_geom_4326;
CREATE INDEX idx_synthese_the_geom_4326_brin ON gn_synthese.synthese USING
BRIN(the_geom_4326) WITH (pages_per_range = 1);

-- 14, 8372, 5916 -- 10 row(s) fetched - 2s (0,001s fetch), on 2024-03-22
at 18:02:09
-- 13, 4185, 2957 -- 45 row(s) fetched - 1s (0,001s fetch), on 2024-03-22
at 18:02:40
-- 12, 2092, 1478 -- 545 row(s) fetched - 1s (0,014s fetch), on 2024-03-22
at 18:03:00
-- 11, 1046, 739 -- 2223 row(s) fetched - 1s (0,051s fetch), on 2024-03-22
at 18:03:21
-- 10, 523, 369 -- 18639 row(s) fetched - 2s (0,300s fetch), on
2024-03-22 at 18:03:42
EXPLAIN (analyze,verbose,timing,costs,buffers) WITH tile AS (
 SELECT ST_TileEnvelope(10, 523, 369) AS envelope
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
observations AS (
 SELECT
 st_snaptogrid(s.the_geom_4326, 0.00001) AS geom,
 ST_Dimension(s.the_geom_local) AS dimension,
 round(ST_Perimeter(s.the_geom_local)) AS perimeter,
 s.id_synthese AS id,
 s."precision"
 FROM gn_synthese.synthese AS s
 JOIN bounds AS b
 ON ST_Intersects(b.envelope_4326, s.the_geom_4326)
 WHERE round(ST_Perimeter(s.the_geom_local)) <= 4000
)
SELECT
 ST_Transform(o.geom, 3857),
 o.dimension,
 o.perimeter,
 COUNT(o.id) AS nbr,
 json_agg(o.id) AS ids
FROM observations AS o
GROUP BY o.geom, o.dimension, o.perimeter ;

-- 14, 8372, 5916 -- 10 row(s) fetched - 1s, on 2024-03-22 at 18:04:51
-- 13, 4185, 2957 -- 46 row(s) fetched - 1s (0,001s fetch), on 2024-03-22
at 18:05:13

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

-- 12, 2092, 1478 -- 545 row(s) fetched - 1s (0,012s fetch), on 2024-03-22
at 18:05:30
-- 11, 1046, 739 -- 2223 row(s) fetched - 1s (0,042s fetch), on 2024-03-22
at 18:05:48
-- 10, 523, 369 -- 18640 row(s) fetched - 2s (0,291s fetch), on
2024-03-22 at 18:06:05
WITH tile AS (
 SELECT ST_TileEnvelope(10, 523, 369) AS envelope
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
observations AS (
 SELECT
 st_snaptogrid(s.the_geom_4326, 0.00001) AS geom,
 ST_Dimension(s.the_geom_local) AS dimension,
 round(ST_Perimeter(s.the_geom_local)) AS perimeter,
 s.id_synthese AS id,
 s."precision"
 FROM gn_synthese.synthese AS s
 JOIN bounds AS b
 ON b.envelope_4326 && s.the_geom_4326
 WHERE round(ST_Perimeter(s.the_geom_local)) <= 4000
)
SELECT
 ST_Transform(o.geom, 3857),
 o.dimension,
 o.perimeter,
 COUNT(o.id) AS nbr,
 json_agg(o.id) AS ids
FROM observations AS o
GROUP BY o.geom, o.dimension, o.perimeter ;

Annexe 4 - Comparaison index GIST et SP-GIST

-- 14, 8372, 5916 -- 10 row(s) fetched - 0,004s (0,001s fetch), on
2024-03-22 at 18:15:52
-- 13, 4185, 2957 -- 46 row(s) fetched - 0,010s (0,002s fetch), on
2024-03-22 at 18:16:04
-- 12, 2092, 1478 -- 545 row(s) fetched - 0,043s (0,013s fetch), on
2024-03-22 at 18:16:17
-- 11, 1046, 739 -- 2223 row(s) fetched - 0,162s (0,044s fetch), on
2024-03-22 at 18:16:43
-- 10, 523, 369 -- 18640 row(s) fetched - 0,954s (0,419s fetch), on
2024-03-22 at 18:16:57
WITH tile AS (

2026/01/31 12:19 21/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 SELECT ST_TileEnvelope(10, 523, 369) AS envelope
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
observations AS (
 SELECT
 st_snaptogrid(s.the_geom_4326, 0.00001) AS geom,
 ST_Dimension(s.the_geom_local) AS dimension,
 round(ST_Perimeter(s.the_geom_local)) AS perimeter,
 s.id_synthese AS id,
 s."precision"
 FROM gn_synthese.synthese AS s
 JOIN bounds AS b
 ON b.envelope_4326 && s.the_geom_4326
 WHERE round(ST_Perimeter(s.the_geom_local)) <= 4000
)
SELECT
 ST_Transform(o.geom, 3857),
 o.dimension,
 o.perimeter,
 COUNT(o.id) AS nbr,
 json_agg(o.id) AS ids
FROM observations AS o
GROUP BY o.geom, o.dimension, o.perimeter ;

DROP INDEX IF EXISTS gn_synthese.i_synthese_the_geom_4326;

CREATE INDEX i_synthese_the_geom_4326 ON gn_synthese.synthese USING SPGIST
(the_geom_4326) ;

-- 14, 8372, 5916 -- 10 row(s) fetched - 0,005s, on 2024-03-22 at 20:36:49
-- 13, 4185, 2957 -- 46 row(s) fetched - 0,011s (0,001s fetch), on
2024-03-22 at 20:35:37
-- 12, 2092, 1478 -- 545 row(s) fetched - 0,037s (0,012s fetch), on
2024-03-22 at 20:35:53
-- 11, 1046, 739 -- 2223 row(s) fetched - 0,156s (0,042s fetch), on
2024-03-22 at 20:36:29
-- 10, 523, 369 -- 18640 row(s) fetched - 0,871s (0,287s fetch), on
2024-03-22 at 20:37:08
WITH tile AS (
 SELECT ST_TileEnvelope(10, 523, 369) AS envelope
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

),
observations AS (
 SELECT
 st_snaptogrid(s.the_geom_4326, 0.00001) AS geom,
 ST_Dimension(s.the_geom_local) AS dimension,
 round(ST_Perimeter(s.the_geom_local)) AS perimeter,
 s.id_synthese AS id,
 s."precision"
 FROM gn_synthese.synthese AS s
 JOIN bounds AS b
 ON b.envelope_4326 && s.the_geom_4326
 WHERE round(ST_Perimeter(s.the_geom_local)) <= 4000
)
SELECT
 ST_Transform(o.geom, 3857),
 o.dimension,
 o.perimeter,
 COUNT(o.id) AS nbr,
 json_agg(o.id) AS ids
FROM observations AS o
GROUP BY o.geom, o.dimension, o.perimeter ;

Annexe 5 - Comparaison agrégation via table relation et via intersection

DROP INDEX IF EXISTS ref_geo.idx_l_areas_geom_4326;

CREATE INDEX idx_l_areas_geom_4326 ON ref_geo.l_areas USING
spgist(geom_4326) ;

-- Via table de relation cor_are_synthese
-- 14, 8372, 5915 × --
-- 13, 4186, 2957 × --
-- 12, 2093, 1478 M1 -- 64 row(s) fetched - 0,218s, on 2024-03-22 at
21:08:05
-- 11, 1046, 739 M1 -- 204 row(s) fetched - 0,347s (0,002s fetch), on
2024-03-22 at 21:08:24
-- 10, 523, 369 M5 -- 47 row(s) fetched - 0,805s (0,001s fetch), on
2024-03-22 at 21:09:05
-- 9, 261, 184 M5 -- 118 row(s) fetched - 1s (0,001s fetch), on
2024-03-22 at 21:09:29
-- 8, 131, 92 M10 -- 128 row(s) fetched - 6s (0,001s fetch), on
2024-03-22 at 21:09:56
-- 7, 65, 46 M10 -- 187 row(s) fetched - 9s (0,002s fetch), on
2024-03-22 at 21:10:39
-- 6, 32, 23 M10 -- 219 row(s) fetched - 10s (0,002s fetch), on
2024-03-22 at 21:11:06
-- 5, 16, 11 M10 -- 819 row(s) fetched - 1m 9s (0,011s fetch), on
2024-03-28 at 15:46:54
WITH tile AS (

2026/01/31 12:19 23/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 SELECT ST_TileEnvelope(12, 2093, 1478) AS envelope -- SRID 3857
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
areas AS (
 SELECT
 a.id_area AS id,
 a.geom,
 a.area_code AS code
 FROM ref_geo.l_areas AS a, bounds AS b
 WHERE a.geom_4326 && b.envelope_4326
 AND a.id_type = ref_geo.get_id_area_type('M10')
)
SELECT
 ST_Transform(a.geom, 3857),
 a.code,
 COUNT(s.id_synthese) AS nbr
FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_area_synthese AS cas
 ON s.id_synthese = cas.id_synthese
 JOIN areas AS a
 ON a.id = cas.id_area
GROUP BY a.geom, a.code ;

-- Via opérateur d'intersection &&
-- 12, 2093, 1478 M1 -- 64 row(s) fetched - 0,125s (0,002s fetch), on
2024-03-22 at 21:17:50
-- 11, 1046, 739 M1 -- 204 row(s) fetched - 0,315s (0,003s fetch), on
2024-03-22 at 21:18:15
-- 10, 523, 369 M5 -- 47 row(s) fetched - 1s (0,001s fetch), on
2024-03-22 at 21:18:43
-- 9, 261, 184 M5 -- 118 row(s) fetched - 1s (0,004s fetch), on
2024-03-22 at 21:19:04
-- 8, 131, 92 M10 -- 128 row(s) fetched - 52s (0,002s fetch), on
2024-03-22 at 21:20:21
-- 7, 65, 46 M10 -- ×
-- 6, 32, 23 M10 -- ×
-- 5, 16, 11 M10 -- ×
WITH tile AS (
 SELECT ST_TileEnvelope(8, 131, 92) AS envelope -- SRID 3857
),
bounds AS (
 SELECT
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

),
areas AS (
 SELECT
 a.geom_4326 AS geom,
 a.id_area AS id,
 a.area_code AS code
 FROM ref_geo.l_areas AS a, bounds AS b
 WHERE a.geom_4326 && b.envelope_4326
 AND a.id_type = ref_geo.get_id_area_type('M10')
)
SELECT
 ST_Transform(a.geom, 3857),
 a.code,
 COUNT(s.id_synthese) AS nbr
FROM gn_synthese.synthese AS s
 JOIN areas AS a
 ON a.geom && s.the_geom_4326
GROUP BY a.geom, a.code ;

Annexe 6 - Ajout champ area_type_code à cor_area_synthese

-- Add column area_type_code to cor_area_synthese
ALTER TABLE gn_synthese.cor_area_synthese
ADD area_type_code VARCHAR(25) DEFAULT NULL;

UPDATE gn_synthese.cor_area_synthese AS cas SET
 area_type_code = t.type_code
FROM ref_geo.l_areas AS a
 JOIN ref_geo.bib_areas_types AS t
 ON a.id_type = t.id_type
WHERE a.id_area = cas.id_area ;

CREATE OR REPLACE FUNCTION
gn_synthese.fct_trig_l_areas_insert_cor_area_synthese_on_each_statement()
 RETURNS TRIGGER
 LANGUAGE plpgsql
AS $function$
 DECLARE
 BEGIN
 -- Intersection de toutes les observations avec les nouvelles zones
et écriture dans cor_area_synthese
 INSERT INTO gn_synthese.cor_area_synthese (id_area, id_synthese,
area_type_code)
 SELECT
 new_areas.id_area AS id_area,
 s.id_synthese AS id_synthese,
 bat.type_code
 FROM NEW AS new_areas

2026/01/31 12:19 25/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 JOIN ref_geo.bib_areas_types AS bat
 ON new_areas.id_type = bat.id_type
 JOIN gn_synthese.synthese AS s
 ON public.ST_INTERSECTS(s.the_geom_local,
new_areas.geom)
 WHERE new_areas."enable" IS TRUE
 AND (
 ST_GeometryType(s.the_geom_local) = 'ST_Point'
 OR
 NOT public.ST_TOUCHES(s.the_geom_local, new_areas.geom)
);
 RETURN NULL;
 END;
$function$;

Annexe 7 - Test de différents index sur area_type_code

-- Tests de 3 types d'index :
-- 379 millions de ligne

CREATE INDEX idx_cas_area_type_code ON gn_synthese.cor_area_synthese USING
hash(area_type_code) ;
--> création en + de 22h => abandon !

CREATE INDEX idx_cas_area_type_code ON gn_synthese.cor_area_synthese USING
btree(area_type_code) ;
--> création en ~2mn => 2,4G d'espace disque

CREATE INDEX idx_cas_area_type_code_id_area ON gn_synthese.cor_area_synthese
USING btree(area_type_code, id_area) ;
--> création en 3mn 16s => 2,5G d'espace disque

CREATE INDEX idx_cas_area_include_synthese ON gn_synthese.cor_area_synthese
USING btree(area_type_code, id_area) INCLUDE (id_synthese);
--> création en 3mn 51s => 12G d'espace disque (avec mailles M20, M50)

Annexe 8 - Test des différents index sur area_type_code

-- Agrégation avec champ "area_type_code" dans "cor_area_synthese" avec idx
btree(area_type_code)
-- 12, 2093, 1478 M1 -- 64 row(s) fetched - 0,253s, on 2024-03-24 at
21:28:13
-- 11, 1046, 739 M1 -- 204 row(s) fetched - 0,465s (0,002s fetch), on
2024-03-24 at 21:27:45
-- 10, 523, 369 M5 -- 47 row(s) fetched - 0,804s (0,001s fetch), on
2024-03-24 at 21:29:06
-- 9, 261, 184 M5 -- 118 row(s) fetched - 1s (0,002s fetch), on
2024-03-24 at 21:29:26

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

-- 9, 261, 184 M10 -- 35 row(s) fetched - 2s, on 2024-03-24 at 21:26:28
-- 8, 131, 92 M10 -- 128 row(s) fetched - 6s (0,002s fetch), on
2024-03-24 at 21:30:04
-- 7, 65, 46 M10 -- 187 row(s) fetched - 9s (0,002s fetch), on
2024-03-24 at 21:30:35
-- 6, 32, 23 M10 -- 219 row(s) fetched - 10s (0,003s fetch), on
2024-03-24 at 21:22:44
-- 5, 16, 11 M10 -- 819 row(s) fetched - 1m 27s (0,009s fetch), on
2024-03-24 at 21:32:47

-- Agrégation avec champ "area_type_code" dans "cor_area_synthese" avec idx
btree(area_type_code, id_area)
-- 12, 2093, 1478 M1 -- 64 row(s) fetched - 0,114s, on 2024-03-24 at
11:28:08
-- 11, 1046, 739 M1 -- 204 row(s) fetched - 0,588s (0,003s fetch), on
2024-03-24 at 11:26:21
-- 10, 523, 369 M5 -- 47 row(s) fetched - 0,732s, on 2024-03-24 at
11:23:10
-- 9, 261, 184 M5 -- 118 row(s) fetched - 1s (0,002s fetch), on
2024-03-24 at 11:22:44
-- 9, 261, 184 M10 -- 35 row(s) fetched - 1s (0,001s fetch), on
2024-03-24 at 21:38:29
-- 8, 131, 92 M10 -- 128 row(s) fetched - 6s (0,001s fetch), on
2024-03-24 at 21:39:33
-- 7, 65, 46 M10 -- 187 row(s) fetched - 9s (0,003s fetch), on
2024-03-24 at 21:40:24
-- 6, 32, 23 M10 -- 219 row(s) fetched - 10s (0,003s fetch), on
2024-03-24 at 21:40:53
-- 5, 16, 11 M10 -- 819 row(s) fetched - 55s (0,009s fetch), on
2024-03-24 at 21:15:34
WITH tile AS (
 SELECT
 'M10' AS type_code,
 ST_TileEnvelope(5, 16, 11) AS envelope -- SRID 3857
),
bounds AS (
 SELECT
 t.type_code,
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
areas AS (
 SELECT
 l.id_area AS id,
 l.geom,
 l.area_code AS code,
 b.type_code
 FROM ref_geo.l_areas AS l, bounds AS b
 WHERE l.geom_4326 && b.envelope_4326

2026/01/31 12:19 27/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 AND l.id_type = ref_geo.get_id_area_type(b.type_code)
)
SELECT
 ST_Transform(a.geom, 3857),
 a.code,
 COUNT(s.id_synthese) AS nbr
FROM areas AS a
 JOIN gn_synthese.cor_area_synthese AS cas
 ON (a.id = cas.id_area AND cas.area_type_code = a.type_code)
 JOIN gn_synthese.synthese AS s
 ON s.id_synthese = cas.id_synthese
GROUP BY a.geom, a.code ;

Annexe 9 - Création vue matérialisée cor_m10_synthese

-- Create a specialized table to store the relationship between synthese
observations and M10 meshes
CREATE MATERIALIZED VIEW IF NOT EXISTS gn_synthese.cor_m10_synthese AS
 SELECT
 s.id_synthese,
 a.id_area
 FROM ref_geo.l_areas AS a
 JOIN gn_synthese.synthese AS s
 ON (a.geom && s.the_geom_local) -- Postgis operator && :
https://postgis.net/docs/geometry_overlaps.html
 WHERE a.id_type = ref_geo.get_id_area_type('M10') ;

CREATE UNIQUE INDEX pk_cor_m10_synthese ON gn_synthese.cor_m10_synthese
USING btree (id_synthese, id_area) ;
CREATE INDEX i_cor_m10_synthese_id_area ON gn_synthese.cor_m10_synthese
USING btree (id_area) ;

Annexe 10 - Test utilisation de la table "cor_m10_synthese"

-- Agrégation avec utilisation de la table cor_m10_synthese
-- 8, 131, 92 M10 -- 128 row(s) fetched - 6s (0,001s fetch), on
2024-03-25 at 21:05:11
-- 7, 65, 46 M10 -- 187 row(s) fetched - 8s (0,003s fetch), on
2024-03-25 at 21:06:16
-- 6, 32, 23 M10 -- 219 row(s) fetched - 10s (0,003s fetch), on
2024-03-25 at 21:04:51
-- 5, 16, 11 M10 -- 819 row(s) fetched - 53s (0,010s fetch), on
2024-03-25 at 21:04:26
WITH tile AS (
 SELECT
 'M10' AS type_code,
 ST_TileEnvelope(7, 65, 46) AS envelope -- SRID 3857
),

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

bounds AS (
 SELECT
 t.type_code,
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
areas AS (
 SELECT
 l.id_area AS id,
 l.geom,
 l.area_code AS code
 FROM ref_geo.l_areas AS l, bounds AS b
 WHERE l.geom_4326 && b.envelope_4326
 AND l.id_type = ref_geo.get_id_area_type(b.type_code)
)
SELECT
 ST_Transform(a.geom, 3857),
 a.code,
 COUNT(s.id_synthese) AS nbr
FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_m10_synthese AS cas
 ON s.id_synthese = cas.id_synthese
 JOIN areas AS a
 ON (a.id = cas.id_area)
GROUP BY a.geom, a.code ;

Annexe 11 - Création vue matérialisée m10_observation_nbr

-- Create a cache table to store the number of observations per M10 mesh
only
CREATE MATERIALIZED VIEW IF NOT EXISTS gn_synthese.m10_observation_nbr AS
 SELECT
 a.id_area,
 COUNT(s.id_synthese) AS nbr
 FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_area_synthese AS cas
 ON s.id_synthese = cas.id_synthese
 JOIN ref_geo.l_areas AS a
 ON a.id_area = cas.id_area
 WHERE a.id_type = ref_geo.get_id_area_type('M10')
 GROUP BY a.id_area ;

CREATE UNIQUE INDEX pk_m10_observation_nbr ON
gn_synthese.m10_observation_nbr USING btree (id_area) ;

2026/01/31 12:19 29/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

Annexe 12 - Création vue matérialisée observation_nbr

-- Create a cache table to store the number of observations per mesh (all
size)
DROP MATERIALIZED VIEW IF EXISTS gn_synthese.observation_nbr ;
CREATE MATERIALIZED VIEW IF NOT EXISTS gn_synthese.observation_nbr AS
 SELECT
 a.id_area,
 bat.type_code AS type_code,
 COUNT(s.id_synthese) AS obs_nbr
 FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_area_synthese AS cas
 ON s.id_synthese = cas.id_synthese
 JOIN ref_geo.l_areas AS a
 ON a.id_area = cas.id_area
 JOIN ref_geo.bib_areas_types AS bat
 ON a.id_type = bat.id_type
 WHERE a.id_type IN (
 ref_geo.get_id_area_type('M10'),
 ref_geo.get_id_area_type('M5'),
 ref_geo.get_id_area_type('M1')
)
 GROUP BY a.id_area, bat.type_code
 ORDER BY bat.type_code, a.id_area ;

CREATE UNIQUE INDEX pk_observation_nbr ON gn_synthese.observation_nbr USING
btree (id_area, type_code) ;

Annexe 13 - Tests utilisation vue matérialisée m10_observation_nbr

-- Agrégation avec utilisation de la table m10_observation_nbr
-- 8, 131, 92 M10 -- 128 row(s) fetched - 0,013s (0,003s fetch), on
2024-03-29 at 17:16:08
-- 7, 65, 46 M10 -- 187 row(s) fetched - 0,014s (0,007s fetch), on
2024-03-29 at 17:15:50
-- 6, 32, 23 M10 -- 219 row(s) fetched - 0,017s (0,007s fetch), on
2024-03-29 at 17:16:34
-- 5, 16, 11 M10 -- 819 row(s) fetched - 0,048s (0,021s fetch), on
2024-03-29 at 17:12:34
WITH tile AS (
 SELECT
 'M10' AS type_code,
 ST_TileEnvelope(8, 131, 92) AS envelope -- SRID 3857
),
bounds AS (
 SELECT
 t.type_code,
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 FROM tile AS t
),
areas AS (
 SELECT
 l.id_area AS id,
 l.geom,
 l.area_code AS code,
 b.type_code
 FROM ref_geo.l_areas AS l, bounds AS b
 WHERE l.geom_4326 && b.envelope_4326
 AND l.id_type = ref_geo.get_id_area_type(b.type_code)
)
SELECT
 ST_Transform(a.geom, 3857),
 a.code,
 o.nbr
FROM gn_synthese.m10_observation_nbr AS o
 JOIN areas AS a
 ON a.id = o.id_area ;

Annexe 14 - Tests utilisation vue matérialisée observation_nbr

-- Agrégation avec utilisation de la table observation_nbr
-- 12, 2093, 1478 M1 -- 64 row(s) fetched - 0,007s (0,002s fetch), on
2024-03-28 at 11:09:28
-- 11, 1046, 739 M1 -- 204 row(s) fetched - 0,010s (0,004s fetch), on
2024-03-28 at 11:10:04
-- 10, 523, 369 M5 -- 47 row(s) fetched - 0,008s (0,002s fetch), on
2024-03-28 at 11:08:21
-- 9, 261, 184 M5 -- 118 row(s) fetched - 0,011s (0,004s fetch), on
2024-03-28 at 11:08:00
-- 8, 131, 92 M10 -- 128 row(s) fetched - 0,010s (0,003s fetch), on
2024-03-28 at 11:06:01
-- 7, 65, 46 M10 -- 187 row(s) fetched - 0,012s (0,003s fetch), on
2024-03-28 at 11:06:23
-- 6, 32, 23 M10 -- 219 row(s) fetched - 0,015s (0,006s fetch), on
2024-03-28 at 11:05:05
-- 5, 16, 11 M10 -- 819 row(s) fetched - 0,036s (0,016s fetch), on
2024-03-28 at 11:05:27
WITH tile AS (
 SELECT
 'M1' AS type_code,
 ST_TileEnvelope(11, 1046, 739) AS envelope -- SRID 3857
),
bounds AS (
 SELECT
 t.type_code,
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326

2026/01/31 12:19 31/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 FROM tile AS t
),
areas AS (
 SELECT
 l.id_area AS id,
 l.geom,
 l.area_code AS code,
 b.type_code
 FROM ref_geo.l_areas AS l, bounds AS b
 WHERE l.geom_4326 && b.envelope_4326
 AND l.id_type = ref_geo.get_id_area_type(b.type_code)
)
SELECT
 ST_Transform(a.geom, 3857),
 a.code,
 o.obs_nbr
FROM gn_synthese.observation_nbr AS o
 JOIN areas AS a
 ON (a.id = o.id_area AND a.type_code = o.type_code) ;

Annexe 15 - Création d'une table cor_area_synthese partitionnée

Création d'une table partitionnée nativement sur le code du type de zone géo reliée à une
observation de la synthese :

DROP TABLE IF EXISTS gn_synthese.cor_area_synthese_partitioned ;

CREATE TABLE gn_synthese.cor_area_synthese_partitioned (
 id_synthese int4 NOT NULL,
 id_area int4 NOT NULL,
 area_type_code VARCHAR(25) DEFAULT NULL::CHARACTER VARYING NULL,
 CONSTRAINT pk_casp PRIMARY KEY (id_synthese, id_area, area_type_code),
 CONSTRAINT fk_casp_id_area FOREIGN KEY (id_area) REFERENCES
ref_geo.l_areas(id_area) ON DELETE CASCADE ON UPDATE CASCADE,
 CONSTRAINT fk_casp_id_synthese FOREIGN KEY (id_synthese) REFERENCES
gn_synthese.synthese(id_synthese) ON DELETE CASCADE ON UPDATE CASCADE
) PARTITION BY list(area_type_code);

 CREATE INDEX idx_casp_id_area ON
gn_synthese.cor_area_synthese_partitioned USING btree (id_area);
 CREATE INDEX idx_casp_area_type_code_id_area ON
gn_synthese.cor_area_synthese_partitioned USING btree (area_type_code,
id_area);

 CREATE TABLE gn_synthese.cor_area_synthese_m10 PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('M10');

 CREATE TABLE gn_synthese.cor_area_synthese_m5 PARTITION OF
gn_synthese.cor_area_synthese_partitioned

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 FOR VALUES IN ('M5');

 CREATE TABLE gn_synthese.cor_area_synthese_m1 PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('M1');

 CREATE TABLE gn_synthese.cor_area_synthese_com PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('COM');

 CREATE TABLE gn_synthese.cor_area_synthese_dep PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('DEP');

 CREATE TABLE gn_synthese.cor_area_synthese_sinp PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('SINP');

 CREATE TABLE gn_synthese.cor_area_synthese_aa PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('AA');

 CREATE TABLE gn_synthese.cor_area_synthese_apb PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('APB');

 CREATE TABLE gn_synthese.cor_area_synthese_metr PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('METR');

 CREATE TABLE gn_synthese.cor_area_synthese_pnr PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('PNR');

 CREATE TABLE gn_synthese.cor_area_synthese_rbiol PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('RBIOL');

 CREATE TABLE gn_synthese.cor_area_synthese_rbios PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('RBIOS');

 CREATE TABLE gn_synthese.cor_area_synthese_reg PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('REG');

 CREATE TABLE gn_synthese.cor_area_synthese_ripn PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('RIPN');

2026/01/31 12:19 33/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 CREATE TABLE gn_synthese.cor_area_synthese_rncfs PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('RNCFS');

 CREATE TABLE gn_synthese.cor_area_synthese_rnn PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('RNN');

 CREATE TABLE gn_synthese.cor_area_synthese_rnr PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('RNR');

 CREATE TABLE gn_synthese.cor_area_synthese_scen PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('SCEN');

 CREATE TABLE gn_synthese.cor_area_synthese_scl PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('SCL');

 CREATE TABLE gn_synthese.cor_area_synthese_sic PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('SIC');

 CREATE TABLE gn_synthese.cor_area_synthese_sram PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('SRAM');

 CREATE TABLE gn_synthese.cor_area_synthese_zbiog PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('ZBIOG');

 CREATE TABLE gn_synthese.cor_area_synthese_zc PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('ZC');

 CREATE TABLE gn_synthese.cor_area_synthese_zico PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('ZICO');

 CREATE TABLE gn_synthese.cor_area_synthese_znieff1 PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('ZNIEFF1');

 CREATE TABLE gn_synthese.cor_area_synthese_znieff2 PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('ZNIEFF2');

 CREATE TABLE gn_synthese.cor_area_synthese_zps PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('ZPS');

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

DROP TABLE IF EXISTS ref_geo.tmp_subdivided_areas ;

CREATE TABLE IF NOT EXISTS ref_geo.tmp_subdivided_areas AS
 SELECT
 random() AS gid,
 a.id_area AS area_id,
 bat.type_code,
 st_subdivide(a.geom, 250) AS geom
 FROM ref_geo.l_areas AS a
 JOIN ref_geo.bib_areas_types AS bat
 ON a.id_type = bat.id_type
 WHERE a."enable" = TRUE
 AND bat.type_code NOT IN ('M10', 'M5', 'M1') ;

 CREATE INDEX IF NOT EXISTS idx_tmp_subdivided_geom ON
ref_geo.tmp_subdivided_areas USING gist (geom);
 CREATE INDEX IF NOT EXISTS idx_tmp_subdivided_area_id ON
ref_geo.tmp_subdivided_areas USING btree(area_id) ;

TRUNCATE TABLE gn_synthese.cor_area_synthese_partitioned ;

INSERT INTO gn_synthese.cor_area_synthese_partitioned
 SELECT DISTINCT
 s.id_synthese,
 a.area_id,
 a.type_code
 FROM gn_synthese.synthese AS s
 JOIN ref_geo.tmp_subdivided_areas AS a
 ON public.st_intersects(s.the_geom_local, a.geom) ;

INSERT INTO gn_synthese.cor_area_synthese_partitioned
 SELECT
 s.id_synthese,
 a.id_area,
 bat.type_code
 FROM ref_geo.l_areas AS a
 JOIN ref_geo.bib_areas_types AS bat
 ON a.id_type = bat.id_type
 JOIN gn_synthese.synthese AS s
 ON (a.geom && s.the_geom_local) -- Postgis operator && :
https://postgis.net/docs/geometry_overlaps.html
 WHERE bat.type_code IN ('M10', 'M5', 'M1') ;

Annexe 16 - Infos sur table "cor_area_synthese" partitionnée

Temps d’exécution du script précédent : 4h05mn
Nombre d'entrées dans la table gn_synthese.synthese : 23 523 902

2026/01/31 12:19 35/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

Détails des zones géo par types de la table ref_geo.l_areas :

SELECT
 bat.type_code,
 bat.type_name,
 COUNT(a.id_area) AS "geom count"
FROM ref_geo.bib_areas_types AS bat
 JOIN ref_geo.l_areas AS a
 ON a.id_type = bat.id_type
GROUP BY bat.type_code, bat.type_name
ORDER BY bat.type_code ;

type_code	type_name	geom count
AA	Aire d'adhésion des Parcs nationaux	3
APB	Aires de protection de biotope	184
COM	Communes	4 095
DEP	Départements	12
M1	Mailles1*1	72 230
M10	Mailles10*10	819
M5	Mailles5*5	3 078
METR	Métropoles et Communautés de Communes	1
PNR	Parcs naturels régionaux	9
RBIOL	Réserves biologiques	34
RBIOS	Réserves de biosphère	7
REG	Région	1
RIPN	Réserves intégrales de parc national	1
RNCFS	Réserves nationales de chasse et faune sauvage	2
RNN	Réserves naturelles nationales	37
RNR	Réserves naturelles regionales	17
SCEN	Sites acquis des Conservatoires d'espaces naturels	236
SCL	Sites du Conservatoire du Littoral	26
SIC	Natura 2000 - Sites d'importance communautaire	240
SINP	Territoire SINP	1
SRAM	Sites Ramsar	3
TERRITORY	Territoire	1
ZBIOG	Zones biogéographiques	4
ZC	Coeurs des Parcs nationaux	3
ZICO	Zone d'importance pour la conservation des oiseaux	32
ZNIEFF1	ZNIEFF1	3 388
ZNIEFF2	ZNIEFF2	272
ZPS	Natura 2000 - Zones de protection spéciales	56

Taille de la table cor_area_synthese par défaut :

SELECT
 'gn_synthese.cor_area_synthese' AS "table",
 pg_size_pretty(pg_relation_size('gn_synthese.cor_area_synthese')) AS
internal,
 pg_size_pretty(pg_table_size('gn_synthese.cor_area_synthese') -
pg_relation_size('gn_synthese.cor_area_synthese')) AS "external", -- toast

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 pg_size_pretty(pg_indexes_size('gn_synthese.cor_area_synthese')) AS
"indexes",
 pg_size_pretty(pg_total_relation_size('gn_synthese.cor_area_synthese')
) AS total,
 COUNT(*) AS "rows"
FROM gn_synthese.cor_area_synthese ;

table	internal	external	indexes	total	rows
gn_synthese.cor_area_synthese	29 GB	8304 kB	26 GB	55 GB	378 815 208

Résumé de la place occupée par la table cor_area_synthese partitionnée :

SELECT
 pi.inhparent::regclass AS "Partitioned table name",
 SUM(psut.n_live_tup) AS "rows count",
 pg_size_pretty(SUM(pg_relation_size(psu.relid))) AS internal,
 pg_size_pretty(SUM(pg_table_size(psu.relid) -
pg_relation_size(psu.relid))) AS "external", -- toast
 pg_size_pretty(SUM(pg_indexes_size(psu.relid))) AS "indexes",
 pg_size_pretty(SUM(pg_total_relation_size(psu.relid))) AS total
FROM pg_catalog.pg_statio_user_tables AS psu
 JOIN pg_class AS pc
 ON psu.relname = pc.relname
 JOIN pg_database AS pd
 ON pc.relowner = pd.datdba
 JOIN pg_inherits AS pi
 ON pi.inhrelid = pc.oid
 JOIN pg_stat_user_tables AS psut
 ON psut.relid = psu.relid
WHERE pd.datname = 'gn2_default'
GROUP BY pi.inhparent
ORDER BY SUM(pg_total_relation_size(psu.relid)) DESC;

|Partitioned table name |rows count
|internal|external|indexes|total|
|---|-----------|--------|--------|---
----|-----|
|gn_synthese.cor_area_synthese_partitioned|378 815 305 |16 GB |5304 kB |20
GB |36 GB|

Calcul de la place occupée par les partitions :

SELECT
 child.relname AS "partition",
 psut.n_live_tup AS "rows count",
 pg_size_pretty(pg_relation_size(concat(nmsp_child.nspname, '.',
child.relname))) AS internal,
 pg_size_pretty(pg_table_size(concat(nmsp_child.nspname, '.',

2026/01/31 12:19 37/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

child.relname)) - pg_relation_size(concat(nmsp_child.nspname, '.',
child.relname))) AS external, -- toast
 pg_size_pretty(pg_indexes_size(concat(nmsp_child.nspname, '.',
child.relname))) AS "indexes",
 pg_size_pretty(pg_total_relation_size(child.oid)) AS total
FROM pg_inherits
 JOIN pg_class AS parent
 ON pg_inherits.inhparent = parent.oid
 JOIN pg_class AS child
 ON pg_inherits.inhrelid = child.oid
 JOIN pg_namespace AS nmsp_child
 ON nmsp_child.oid = child.relnamespace
 JOIN pg_stat_user_tables AS psut
 ON psut.relid = child.oid
WHERE parent.relname = 'cor_area_synthese_partitioned'
ORDER BY child.relname ;

partition	rows count	internal	external	indexes	total
cor_area_synthese_aa	341 435	14 MB	32 kB	17 MB	31 MB
cor_area_synthese_apb	934 481	39 MB	40 kB	50 MB	90 MB
cor_area_synthese_com	32 497 851	1372 MB	416 kB	1703 MB	3076 MB
cor_area_synthese_dep	23 819 618	1006 MB	304 kB	1223 MB	2229 MB
cor_area_synthese_m1	114 355 715	4829 MB	1384 kB	6623 MB	11 GB
cor_area_synthese_m10	28 629 845	1209 MB	368 kB	1505 MB	2714 MB
cor_area_synthese_m5	33 117 680	1399 MB	416 kB	1759 MB	3158 MB
cor_area_synthese_metr	265 394	11 MB	32 kB	14 MB	25 MB
cor_area_synthese_others	930 895	39 MB	40 kB	48 MB	87 MB
cor_area_synthese_pnr	4 944 797	209 MB	80 kB	256 MB	465 MB
cor_area_synthese_rbiol	120 425	5208 kB	32 kB	6464 kB	11 MB
cor_area_synthese_reg	23 495 584	992 MB	304 kB	1196 MB	2188 MB
cor_area_synthese_ripn	13 221	576 kB	32 kB	768 kB	1376 kB
cor_area_synthese_rncfs	41 321	1792 kB	32 kB	2200 kB	4024 kB
cor_area_synthese_rnn	728 092	31 MB	32 kB	37 MB	68 MB
cor_area_synthese_rnr	190 592	8248 kB	32 kB	10032 kB	18 MB
cor_area_synthese_scen	812 249	34 MB	40 kB	42 MB	76 MB
cor_area_synthese_scl	122 572	5304 kB	32 kB	6440 kB	12 MB
cor_area_synthese_sic	6 033 103	255 MB	96 kB	311 MB	565 MB
cor_area_synthese_sinp	23 495 584	992 MB	304 kB	1203 MB	2196 MB
cor_area_synthese_sram	224 062	9696 kB	32 kB	11 MB	21 MB
cor_area_synthese_territory	23 495 584	1169 MB	352 kB	1474 MB	2644 MB
cor_area_synthese_zbiog	23 552 681	995 MB	304 kB	1200 MB	2195 MB
cor_area_synthese_zc	274 089	12 MB	32 kB	14 MB	25 MB
cor_area_synthese_zico	3 982 270	168 MB	72 kB	202 MB	370 MB
cor_area_synthese_znieff1	13 676 029	578 MB	192 kB	721 MB	1299 MB
cor_area_synthese_znieff2	15 162 334	640 MB	208 kB	776 MB	1416 MB
cor_area_synthese_zps	3 557 802	150 MB	64 kB	184 MB	334 MB

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

Annexe 17 - Test d'utilisation d'une table "cor_area_synthese" partitionnée

Explain : https://explain.dalibo.com/plan/71eh98d2e11fcceb

-- Agrégation avec champ "area_type_code" dans "cor_area_synthese_partioned"
avec idx btree(area_type_code, id_area)
-- 12, 2093, 1478 M1 -- 64 row(s) fetched - 0,102s (0,001s fetch), on
2024-03-29 at 16:10:11
-- 11, 1046, 739 M1 -- 204 row(s) fetched - 0,229s (0,002s fetch), on
2024-03-29 at 16:10:35
-- 10, 523, 369 M5 -- 47 row(s) fetched - 0,683s (0,001s fetch), on
2024-03-29 at 16:11:51
-- 9, 261, 184 M5 -- 118 row(s) fetched - 1s (0,001s fetch), on
2024-03-29 at 16:12:14
-- 9, 261, 184 M10 -- 35 row(s) fetched - 2s, on 2024-03-29 at 16:12:39
-- 8, 131, 92 M10 -- 128 row(s) fetched - 6s (0,002s fetch), on
2024-03-29 at 16:13:19
-- 7, 65, 46 M10 -- 187 row(s) fetched - 9s (0,002s fetch), on
2024-03-29 at 15:54:10
-- 6, 32, 23 M10 -- 219 row(s) fetched - 10s (0,003s fetch), on
2024-03-29 at 15:55:55
-- 5, 16, 11 M10 -- 819 row(s) fetched - 55s (0,009s fetch), on
2024-03-29 at 15:57:08
WITH tile AS (
 SELECT
 'M10' AS type_code,
 ST_TileEnvelope(8, 131, 92) AS envelope
),
bounds AS (
 SELECT
 t.type_code,
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t
),
areas AS (
 SELECT
 l.id_area AS id,
 l.geom,
 l.area_code AS code,
 b.type_code
 FROM ref_geo.l_areas AS l, bounds AS b
 WHERE l.geom_4326 && b.envelope_4326
 AND l.id_type = ref_geo.get_id_area_type(b.type_code)
),
observations AS (
 SELECT
 a.geom,
 a.code,
 COUNT(s.id_synthese) AS nbr

https://explain.dalibo.com/plan/71eh98d2e11fcceb

2026/01/31 12:19 39/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 FROM areas AS a
 JOIN gn_synthese.cor_area_synthese_partitioned AS casp
 ON (casp.id_area = a.id AND casp.area_type_code = a.type_code)
 JOIN gn_synthese.synthese AS s
 ON casp.id_synthese = s.id_synthese
 GROUP BY a.geom, a.code
)
SELECT
 ST_Transform(o.geom, 3857) AS geom,
 o.nbr,
 o.code
FROM observations AS o;

Annexe 18 - Test utilisation table "cor_area_synthese" sans lien vers la
"synthese"

Explain : https://explain.dalibo.com/plan/9ddfc18gfc61g83b

-- Agrégation avec champ "area_type_code" dans "cor_area_synthese_partioned"
avec idx btree(area_type_code, id_area) sans relation vers "synthese"
-- 12, 2093, 1478 M1 -- 64 row(s) fetched - 0,035s (0,001s fetch), on
2024-03-29 at 17:06:16
-- 11, 1046, 739 M1 -- 204 row(s) fetched - 0,071s (0,002s fetch), on
2024-03-29 at 17:05:58
-- 10, 523, 369 M5 -- 47 row(s) fetched - 0,188s (0,001s fetch), on
2024-03-29 at 17:05:44
-- 9, 261, 184 M5 -- 118 row(s) fetched - 0,365s (0,002s fetch), on
2024-03-29 at 17:05:27
-- 9, 261, 184 M10 -- 35 row(s) fetched - 0,844s, on 2024-03-29 at
17:05:12
-- 8, 131, 92 M10 -- 128 row(s) fetched - 1s (0,002s fetch), on
2024-03-29 at 17:04:43
-- 7, 65, 46 M10 -- 187 row(s) fetched - 2s (0,002s fetch), on
2024-03-29 at 17:07:44
-- 6, 32, 23 M10 -- 219 row(s) fetched - 2s (0,003s fetch), on
2024-03-29 at 17:07:58
-- 5, 16, 11 M10 -- 819 row(s) fetched - 10s (0,009s fetch), on
2024-03-29 at 17:08:35
-- EXPLAIN (ANALYZE, COSTS, VERBOSE, BUFFERS, FORMAT JSON)
WITH tile AS (
 SELECT
 'M10' AS type_code,
 ST_TileEnvelope(8, 131, 92) AS envelope
),
bounds AS (
 SELECT
 t.type_code,
 t.envelope,
 ST_Transform(t.envelope, 4326) AS envelope_4326
 FROM tile AS t

https://explain.dalibo.com/plan/9ddfc18gfc61g83b

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

),
areas AS (
 SELECT
 l.id_area AS id,
 l.geom,
 l.area_code AS code,
 b.type_code
 FROM ref_geo.l_areas AS l, bounds AS b
 WHERE l.geom_4326 && b.envelope_4326
 AND l.id_type = ref_geo.get_id_area_type(b.type_code)
),
observations AS (
 SELECT
 a.geom,
 a.code,
 COUNT(casp.id_synthese) AS nbr
 FROM areas AS a
 JOIN gn_synthese.cor_area_synthese_partitioned AS casp
 ON (casp.id_area = a.id AND casp.area_type_code = a.type_code)
 GROUP BY a.geom, a.code
)
SELECT
 ST_Transform(o.geom, 3857) AS geom,
 o.nbr,
 o.code
FROM observations AS o;

Annexe 19 - Test requêtes Synthese uniquement sur VM
v_synthese_for_webapp

CREATE EXTENSION IF NOT EXISTS intarray;

DROP TABLE IF EXISTS ref_geo.areas_subdivided ;

CREATE TABLE IF NOT EXISTS ref_geo.areas_subdivided AS
 SELECT
 random() AS gid,
 g.area_id,
 g.type_code,
 g.geom
 FROM (
 SELECT
 a.id_area AS area_id,
 bat.type_code,
 st_subdivide(a.geom_4326, 250) AS geom
 FROM ref_geo.l_areas AS a
 JOIN ref_geo.bib_areas_types AS bat

2026/01/31 12:19 41/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 ON a.id_type = bat.id_type
 WHERE a."enable" = TRUE
 AND a.id_type NOT IN (
 ref_geo.get_id_area_type('M50'),
 ref_geo.get_id_area_type('M20'),
 ref_geo.get_id_area_type('M10'),
 ref_geo.get_id_area_type('M5'),
 ref_geo.get_id_area_type('M1')
)
 UNION
 SELECT
 a.id_area AS area_id,
 bat.type_code,
 a.geom_4326 AS geom
 FROM ref_geo.l_areas AS a
 JOIN ref_geo.bib_areas_types AS bat
 ON a.id_type = bat.id_type
 WHERE a."enable" = TRUE
 AND a.id_type IN (
 ref_geo.get_id_area_type('M50'),
 ref_geo.get_id_area_type('M20'),
 ref_geo.get_id_area_type('M10'),
 ref_geo.get_id_area_type('M5'),
 ref_geo.get_id_area_type('M1')
)
) AS g
;
CREATE INDEX IF NOT EXISTS idx_areas_subdivided_geom ON
ref_geo.areas_subdivided USING gist (geom);
CREATE INDEX IF NOT EXISTS idx_areas_subdivided_area_id ON
ref_geo.areas_subdivided USING btree(area_id) ;
CREATE INDEX IF NOT EXISTS idx_areas_subdivided_type_code ON
ref_geo.areas_subdivided USING btree(type_code) ;

DROP MATERIALIZED VIEW IF EXISTS gn_synthese.v_synthese_for_web_app_full ;

CREATE MATERIALIZED VIEW gn_synthese.v_synthese_for_web_app_full AS
 SELECT
 s.id_synthese,
 s.unique_id_sinp,
 s.unique_id_sinp_grp,
 s.id_source,
 s.entity_source_pk_value,
 s.count_min,
 s.count_max,
 s.nom_cite,
 s.meta_v_taxref,
 s.sample_number_proof,
 s.digital_proof,
 s.non_digital_proof,

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 s.altitude_min,
 s.altitude_max,
 s.depth_min,
 s.depth_max,
 s.place_name,
 s."precision",
 s.the_geom_4326,
 st_asgeojson(s.the_geom_4326)::jsonb AS st_asgeojson,
 -- ADD blurring geom
 s.date_min,
 s.date_max,
 s.validator,
 s.validation_comment,
 s.observers,
 s.id_digitiser,
 s.determiner,
 s.comment_context,
 s.comment_description,
 s.meta_validation_date,
 s.meta_create_date,
 s.meta_update_date,
 s.last_action,
 d.id_dataset,
 d.dataset_name,
 d.id_acquisition_framework,
 (SELECT array_agg(DISTINCT cda.id_organism) FROM
gn_meta.cor_dataset_actor AS cda WHERE cda.id_dataset = d.id_dataset AND
cda.id_organism IS NOT NULL) AS organisms,
 s.id_nomenclature_geo_object_nature,
 s.id_nomenclature_info_geo_type,
 s.id_nomenclature_grp_typ,
 s.grp_method,
 s.id_nomenclature_obs_technique,
 s.id_nomenclature_bio_status,
 s.id_nomenclature_bio_condition,
 s.id_nomenclature_naturalness,
 s.id_nomenclature_exist_proof,
 s.id_nomenclature_valid_status,
 s.id_nomenclature_diffusion_level,
 s.id_nomenclature_life_stage,
 s.id_nomenclature_sex,
 s.id_nomenclature_obj_count,
 s.id_nomenclature_type_count,
 s.id_nomenclature_sensitivity,
 s.id_nomenclature_observation_status,
 s.id_nomenclature_blurring,
 s.id_nomenclature_source_status,
 s.id_nomenclature_determination_method,
 s.id_nomenclature_behaviour,
 s.reference_biblio,

2026/01/31 12:19 43/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 sources.name_source,
 sources.url_source,
 t.cd_nom,
 t.cd_ref,
 t.nom_valide,
 t.lb_nom,
 t.nom_vern,
 s.id_module,
 t.group1_inpn,
 t.group2_inpn,
 t.group3_inpn,
 -- TODO : use blurring geom instead
 (SELECT a.geom FROM ref_geo.areas_subdivided AS a WHERE
s.the_geom_point && a.geom AND a.type_code = 'M5' LIMIT 1) AS m5,
 (SELECT a.geom FROM ref_geo.areas_subdivided AS a WHERE
s.the_geom_point && a.geom AND a.type_code = 'M10' LIMIT 1) AS m10,
 (SELECT array_agg(DISTINCT a.area_id) FROM ref_geo.areas_subdivided
AS a WHERE st_intersects(s.the_geom_4326, a.geom) AND a.type_code = 'COM')
AS municipalities,
 (SELECT array_agg(DISTINCT a.area_id) FROM ref_geo.areas_subdivided
AS a WHERE st_intersects(s.the_geom_4326, a.geom) AND a.type_code = 'DEP')
AS departements
 FROM gn_synthese.synthese AS s
 JOIN taxonomie.taxref AS t
 ON t.cd_nom = s.cd_nom
 JOIN gn_meta.t_datasets AS d
 ON d.id_dataset = s.id_dataset
 JOIN gn_synthese.t_sources AS sources
 ON sources.id_source = s.id_source
 WHERE s.the_geom_4326 IS NOT NULL
 AND s.the_geom_4326 != ''
 ORDER BY s.id_synthese
 --LIMIT 100000
 --OFFSET 0
;

CREATE UNIQUE INDEX idx_sfwa_id_synthese_cd_nom ON
gn_synthese.v_synthese_for_web_app_full USING btree (id_synthese) INCLUDE
(cd_nom);
CREATE INDEX idx_sfwa_altitude_max ON
gn_synthese.v_synthese_for_web_app_full USING btree (altitude_max);
CREATE INDEX idx_sfwa_altitude_min ON
gn_synthese.v_synthese_for_web_app_full USING btree (altitude_min);
CREATE INDEX idx_sfwa_cd_nom ON gn_synthese.v_synthese_for_web_app_full
USING btree (cd_nom);
CREATE INDEX idx_sfwa_date_max ON gn_synthese.v_synthese_for_web_app_full
USING btree (date_max DESC);
CREATE INDEX idx_sfwa_date_min ON gn_synthese.v_synthese_for_web_app_full
USING btree (date_min DESC);
CREATE INDEX idx_sfwa_id_dataset ON gn_synthese.v_synthese_for_web_app_full
USING btree (id_dataset);

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

CREATE INDEX idx_sfwa_id_sources ON gn_synthese.v_synthese_for_web_app_full
USING btree (id_source);
CREATE INDEX idx_sfwa_the_geom_4326 ON
gn_synthese.v_synthese_for_web_app_full USING spgist (the_geom_4326);

CREATE INDEX idx_sfwa_geojson ON gn_synthese.v_synthese_for_web_app_full
USING gist (st_asgeojson);
CREATE INDEX idx_sfwa_observers ON gn_synthese.v_synthese_for_web_app_full
USING btree (observers);
CREATE INDEX idx_sfwa_id_acquisition_framework ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_acquisition_framework);
CREATE INDEX idx_sfwa_organisms ON gn_synthese.v_synthese_for_web_app_full
USING gin (organisms);
CREATE INDEX idx_sfwa_municipalities ON
gn_synthese.v_synthese_for_web_app_full USING gin (municipalities);
CREATE INDEX idx_sfwa_departements ON
gn_synthese.v_synthese_for_web_app_full USING gin (departements);
--CREATE INDEX idx_sfwa_m5 ON gn_synthese.v_synthese_for_web_app_full USING
gist (m5);
--CREATE INDEX idx_sfwa_m10 ON gn_synthese.v_synthese_for_web_app_full USING
gist (m10);

CREATE INDEX idx_sfwa_id_digitiser ON
gn_synthese.v_synthese_for_web_app_full USING btree (id_digitiser);
CREATE INDEX idx_sfwa_id_module ON gn_synthese.v_synthese_for_web_app_full
USING btree (id_module);
CREATE INDEX idx_sfwa_id_nomenclature_bio_condition ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_bio_condition);
CREATE INDEX idx_sfwa_id_nomenclature_bio_status ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_bio_status);
-- CREATE INDEX idx_sfwa_id_nomenclature_biogeo_status ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_biogeo_status);
CREATE INDEX idx_sfwa_id_nomenclature_blurring ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_blurring);
CREATE INDEX idx_sfwa_id_nomenclature_determination_method ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_determination_method);
CREATE INDEX idx_sfwa_id_nomenclature_diffusion_level ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_diffusion_level);
CREATE INDEX idx_sfwa_id_nomenclature_exist_proof ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_exist_proof);
CREATE INDEX idx_sfwa_id_nomenclature_geo_object_nature ON
gn_synthese.v_synthese_for_web_app_full USING btree

2026/01/31 12:19 45/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

(id_nomenclature_geo_object_nature);
-- CREATE INDEX idx_sfwa_id_nomenclature_id_nomenclature_grp_typ ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_id_nomenclature_grp_typ);
CREATE INDEX idx_sfwa_id_nomenclature_info_geo_type ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_info_geo_type);
CREATE INDEX idx_sfwa_id_nomenclature_life_stage ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_life_stage);
CREATE INDEX idx_sfwa_id_nomenclature_obj_count ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_obj_count);
CREATE INDEX idx_sfwa_id_nomenclature_obs_technique ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_obs_technique);
CREATE INDEX idx_sfwa_id_nomenclature_observation_status ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_observation_status);
CREATE INDEX idx_sfwa_id_nomenclature_sensitivity ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_sensitivity);
CREATE INDEX idx_sfwa_id_nomenclature_sex ON
gn_synthese.v_synthese_for_web_app_full USING btree (id_nomenclature_sex);
CREATE INDEX idx_sfwa_id_nomenclature_source_status ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_source_status);
CREATE INDEX idx_sfwa_id_nomenclature_type_count ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_type_count);
CREATE INDEX idx_sfwa_id_nomenclature_valid_status ON
gn_synthese.v_synthese_for_web_app_full USING btree
(id_nomenclature_valid_status);
CREATE INDEX idx_sfwaf2_geojson ON gn_synthese.v_synthese_for_web_app_full
USING gin ("st_asgeojson");

Annexe 20 - Ressources Web

Module externe de test : Syntests
Listes des tickets GeoNature traitant du sujet :

#1093 - Synthèse : affichage de mailles et observations géo-confidentielles
#560 - Synthèse - Travail sur les performances
#559 - Synthese: ajout plugin Leaflet clusterMarker
#728 - CARTO - permettre l'affichage de plusieurs couches simultanément

Sources de données :
Ressources proposées par OpenMapTiles
Présentation des tuiles vecteurs proposée par Etalab
Tuiles et styles proposés par IGN

Amélioration des index spatiaux :
(The Many) Spatial Indexes of PostGIS : Paul Ramsey, 5 mai 2021.

https://github.com/cbn-alpin/gn_module_syntests
https://github.com/PnX-SI/GeoNature/issues/1093
https://github.com/PnX-SI/GeoNature/issues/560
https://github.com/PnX-SI/GeoNature/issues/559
https://github.com/PnX-SI/GeoNature/issues/728
https://openmaptiles.org/about/
https://guides.data.gouv.fr/reutiliser-des-donnees/utiliser-les-api-geographiques/utiliser-les-tuiles-vectorielles
https://geoservices.ign.fr/documentation/services/api-et-services-ogc/tuiles-vectorielles-tmswmts/styles
https://www.crunchydata.com/blog/the-many-spatial-indexes-of-postgis

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

Quelles sont les meilleures pratiques pour simplifier les géométries et réduire les attributs
dans PostGIS pour les tuiles vectorielles ? : IA et communauté Linkedin.
PostgreSQL Best Practices: Selection and Optimization of PostGIS Spatial Indexes (GiST,
BRIN, and R-tree) : Digoal, 18 décembre 2020.
Boosting PostGIS Performance : Symphony, 7 mars 2022.
Spatial Indexes and Bad Queries : Paul Ramsey, 4 mai 2021.
5x Faster Spatial Join with this One Weird Trick : Paul Ramsey, 28 septembre 2018.

Annexe 21 - Analyse du nombres d'observation max par communes et taxons

Requêtes Communes :

SELECT
 a.area_name,
 a.area_code,
 COUNT(s.id_synthese) AS obs_nbr
FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_area_synthese AS cas
 ON (cas.id_synthese = s.id_synthese AND cas.area_type_code = 'COM')
 JOIN ref_geo.l_areas AS a
 ON cas.id_area = a.id_area
GROUP BY a.area_name, a.area_code
ORDER BY obs_nbr DESC ;

SELECT
 a.area_name,
 a.area_code,
 COUNT(s.id_synthese) AS obs_nbr
FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_area_synthese AS cas
 ON cas.id_synthese = s.id_synthese
 JOIN ref_geo.l_areas AS a
 ON (cas.id_area = a.id_area AND a.id_type =
ref_geo.get_id_area_type_by_code('COM'))
GROUP BY a.area_name, a.area_code
ORDER BY obs_nbr DESC ;

Résultats pour les Communes sur la base SINP AURA de 23 millions de données du 2024-05-20 :

max d'observation pour une commune : 245 043

Requêtes Taxons :

SELECT
 t2.cd_nom AS sciname_code,
 t2.lb_nom AS sciname,
 t2.nom_vern AS vernaname,
 COUNT(s.id_synthese) AS obs_nbr
FROM gn_synthese.synthese AS s

https://www.linkedin.com/advice/0/what-best-practices-simplifying-geometries-reducing-attributes
https://www.linkedin.com/advice/0/what-best-practices-simplifying-geometries-reducing-attributes
https://www.alibabacloud.com/blog/postgresql-best-practices-selection-and-optimization-of-postgis-spatial-indexes-gist-brin-and-r-tree_597034
https://www.alibabacloud.com/blog/postgresql-best-practices-selection-and-optimization-of-postgis-spatial-indexes-gist-brin-and-r-tree_597034
https://symphony.is/about-us/blog/boosting-postgis-performance
https://blog.cleverelephant.ca/2021/05/indexes-and-queries.html
https://blog.cleverelephant.ca/2018/09/postgis-external-storage.html
https://wiki-sinp.cbn-alpin.fr/projets/silene-geonature/test-amelioration-performance-synthese/obs-nbr-communes

2026/01/31 12:19 47/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 JOIN taxonomie.taxref AS t1
 ON t1.cd_nom = s.cd_nom
 JOIN taxonomie.taxref AS t2
 ON t2.cd_nom = t1.cd_ref
GROUP BY t2.lb_nom, t2.cd_nom
ORDER BY obs_nbr DESC
LIMIT 2000 ;

Résultats pour les Taxons sur la base SINP AURA de 23 millions de données du 2024-05-20 :

taxon avec le max d'observation : 613 465 obs
taxons avec plus de 150 000 obs : 25 / 32 465 taxons

Annexe 22 - Test utilisation de mailles 20km et 50km

Source des mailles : https://inpn.mnhn.fr/telechargement/cartes-et-information-geographique
Procédure :

Télécharger manuellement les archives Zip
Extraire manuellement les archives
Utiliser Shp2pgsql :

Note : le paquet postgis doit être isntallé pour pouvoir utiliser Shp2pgsql.

M20 : shp2pgsql METROP_L9320X20.shp ref_geo.m20 | psql -h localhost -p
5432 -U geonatadmin -d gn2_default
M50 : shp2pgsql METROP_L9350X50.shp ref_geo.m50 | psql -h localhost -p
5432 -U geonatadmin -d gn2_default
Insérer les mailles M20 :

INSERT INTO ref_geo.bib_areas_types (
 type_name,
 type_code,
 type_desc,
 ref_name,
 ref_version,
 num_version,
 size_hierarchy
) VALUES (
 'Mailles20*20',
 'M20',
 'Type maille INPN 20*20km',
 NULL,
 16082021,
 NULL,
 20000
);

INSERT INTO ref_geo.l_areas (
 id_type,
 area_name,
 area_code,

https://wiki-sinp.cbn-alpin.fr/projets/silene-geonature/test-amelioration-performance-synthese/obs-nbr-taxons
https://inpn.mnhn.fr/telechargement/cartes-et-information-geographique
https://inpn.mnhn.fr/telechargement/cartes-et-information-geographique
https://postgis.net/docs/using_postgis_dbmanagement.html#shp2pgsql_usage

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 geom,
 geom_4326,
 centroid,
 "source",
 "comment",
 "enable",
 additional_data
)
 SELECT DISTINCT
 ref_geo.get_id_area_type('M20'),
 m.cd_sig,
 m.code_20km,
 m.geom,
 st_transform(ST_SetSRID(m.geom, 2154), 4326),
 st_centroid(m.geom),
 'INPN',
 NULL,
 TRUE,
 NULL
 FROM ref_geo.m20 AS m
 JOIN ref_geo.tmp_subdivided_areas AS a
 ON (m.geom && a.geom AND a.type_code = 'SINP') ;

CREATE TABLE gn_synthese.cor_area_synthese_m20 PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('M20');

Insérer les mailles M50 :

INSERT INTO ref_geo.bib_areas_types (
 type_name,
 type_code,
 type_desc,
 ref_name,
 ref_version,
 num_version,
 size_hierarchy
) VALUES (
 'Mailles50*50',
 'M50',
 'Type maille INPN 50*50km',
 NULL,
 16082021,
 NULL,
 50000
);

INSERT INTO ref_geo.l_areas (
 id_type,

2026/01/31 12:19 49/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 area_name,
 area_code,
 geom,
 geom_4326,
 centroid,
 "source",
 "comment",
 "enable",
 additional_data
)
 SELECT DISTINCT
 ref_geo.get_id_area_type('M50'),
 m.cd_sig,
 m.code_50km,
 m.geom,
 st_transform(ST_SetSRID(m.geom, 2154), 4326),
 st_centroid(m.geom),
 'INPN',
 NULL,
 TRUE,
 NULL
 FROM ref_geo.m50 AS m
 JOIN ref_geo.tmp_subdivided_areas AS a
 ON (m.geom && a.geom AND a.type_code = 'SINP') ;

CREATE TABLE gn_synthese.cor_area_synthese_m50 PARTITION OF
gn_synthese.cor_area_synthese_partitioned
 FOR VALUES IN ('M50');

Si besoins mettre à jour le champ area_type_code :

WITH m20 AS (
 SELECT id_area
 FROM ref_geo.l_areas
 WHERE id_type = ref_geo.get_id_area_type('M20')
)
UPDATE gn_synthese.cor_area_synthese AS cas SET
 area_type_code = 'M20'
FROM m20
WHERE cas.id_area = m20.id_area;

WITH m50 AS (
 SELECT id_area
 FROM ref_geo.l_areas
 WHERE id_type = ref_geo.get_id_area_type('M50')
)
UPDATE gn_synthese.cor_area_synthese AS cas SET
 area_type_code = 'M50'
FROM m50
WHERE cas.id_area = m50.id_area;

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

Activer seulement les mailles M20 de la région SINP :

UPDATE ref_geo.l_areas AS a
 SET "enable" = FALSE
WHERE a.id_type = ref_geo.get_id_area_type('M20');

UPDATE ref_geo.l_areas AS a
 SET "enable" = TRUE
FROM ref_geo.tmp_subdivided_areas AS sa
WHERE a.id_type = ref_geo.get_id_area_type('M20')
 AND a.geom && sa.geom
 AND sa.type_code = 'SINP';

Activer seulement les mailles M50 de la région SINP :

UPDATE ref_geo.l_areas AS a
 SET "enable" = FALSE
WHERE a.id_type = ref_geo.get_id_area_type('M50');

UPDATE ref_geo.l_areas AS a
 SET "enable" = TRUE
FROM ref_geo.tmp_subdivided_areas AS sa
WHERE a.id_type = ref_geo.get_id_area_type('M50')
 AND a.geom && sa.geom
 AND sa.type_code = 'SINP';

Annexe 23 - Notes sur les outils utilisés durant les tests

Utilisation de pg_stat_statements

Ressource : Doc Postgresql 15 "pg_stat_statements", en français
pg_stat_statements est une extension Postgresql qui permet d'avoir un historique des
requêtes lancés, leur fréquence, durée…

Étant données que les index spécialisées doivent être créé en fonction des requêtes les
plus fréquentes, cet outil va nous servir à les identifiés et suivre leurs évolutions.

Procédure de mise en place :
Définir les paramètres de config Postgresql suivant :

shared_preload_libraries = 'pg_stat_statements'
compute_query_id = on
pg_stat_statements.max = 10000
pg_stat_statements.track = all

Ajouter l'extension suivante à la base de données à surveiller :

CREATE EXTENSION pg_stat_statements ;

Vous pourrez ensuite consultez les requêtes exécutés avec :

https://docs.postgresql.fr/15/pgstatstatements.html

2026/01/31 12:19 51/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

SELECT pd.datname, pr.rolname, pss.query, pss.calls,
(pss.mean_exec_time/1000) AS sec_mean_exec_time
FROM pg_stat_statements AS pss
 JOIN pg_roles AS pr ON (pr."oid" = pss.userid)
 JOIN pg_catalog.pg_database AS pd ON (pd."oid" = pss.dbid)
WHERE pr.rolname = 'geonatadmin'
 AND pd.datname = 'gn2_default'
 AND pss.mean_exec_time > 500
ORDER BY pss.calls DESC, pss.mean_exec_time DESC;

pg_stat_statements permet de connaître les requêtes les plus fréquentes, ce qui permet
ensuite de les analyser avec EXPLAIN (ANALYZE, COSTS, VERBOSE, BUFFERS, FORMAT
JSON) et https://explain.dalibo.com/.
Voir aussi cet article pour identifiez les index inutilisés.

Test du serveur de fond carto : Tileserver-GL

Utiliser Docker pour installer le TileServer GL. Debian ne possède pas nativement des paquets
pour toutes les dépendances.

Debugger de tuiles vecteurs

Extension Chrome Mapbox Vector Tile : ajoute un onglet dans les outils développeur]]
Vector Inspector
Affichage z,x,y des tuiles - OpenLayers
Affichage z,x,y des tuiles - Maplibre Planetiler

Framework carto web Maplibre

Création des outils de base de visualisation de la carte très facile : zoom, passage en 3D,
geolocalisation,
Liste des plugins Maplibre GL : https://maplibre.org/maplibre-gl-js/docs/plugins/

Plugin d'outils d'édition Mapbox-Gl-Draw : https://github.com/mapbox/mapbox-gl-draw
Comment ajouter un mode (fonctionnalité d'édition) :
Commenta ajouter une icone d'outil :
Mode édition de rectangle :
Mode édition de cercle :

Plugin d'ajout de légende : https://github.com/watergis/mapbox-gl-legend
Plugin de gestion de couches et de leur opacité :
https://github.com/mug-jp/maplibre-gl-opacity
Plugin tuiles GeoJson : https://github.com/mkeller3/mapbox-gl-ogc-feature-collection
Plugin d'inspection des features (debug) : https://github.com/maplibre/maplibre-gl-inspect

Intégration de Mapblibre avec Angular "@maplibre/ngx-maplibre-gl" :
https://maplibre.org/ngx-maplibre-gl/demo/display-map

Documentation API Angular "@maplibre/ngx-maplibre-gl" :
https://maplibre.org/ngx-maplibre-gl/doc
Code source des exemples Maplibre et Angular :
https://github.com/maplibre/ngx-maplibre-gl/tree/c04efff199c1d21016c9bd2d6ba774286c

https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/l_outil_en_ligne_explain_de_dalibo
https://www.crunchydata.com/blog/cleaning-up-your-postgres-database
https://chromewebstore.google.com/detail/mfikcokdfehaofebfhoehbajfgbofdpk
https://stevage.github.io/vector-inspector/
https://openlayers.org/en/latest/examples/canvas-tiles.html
https://onthegomap.github.io/planetiler-demo/
https://maplibre.org/maplibre-gl-js/docs/plugins/
https://github.com/mapbox/mapbox-gl-draw
https://github.com/watergis/mapbox-gl-legend
https://github.com/mug-jp/maplibre-gl-opacity
https://github.com/mkeller3/mapbox-gl-ogc-feature-collection
https://github.com/maplibre/maplibre-gl-inspect
https://maplibre.org/ngx-maplibre-gl/demo/display-map
https://maplibre.org/ngx-maplibre-gl/doc
https://github.com/maplibre/ngx-maplibre-gl/tree/c04efff199c1d21016c9bd2d6ba774286c5c3e77/projects/showcase/src/app/demo/examples

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

5c3e77/projects/showcase/src/app/demo/examples

Annexe 24 - Test d'utilisation de mailles hexagonales

Ressources :
Tile Serving with Dynamic Geometry : Paul Ramsey, 24 mars 2020.
Fishnets, Honeycombs and Footballs; Better spatial models with hexagonal grids : Dennis
Bauszus, 3 mars 2017.
Hex grid algorithm for PostGIS : Dennis Bauszus, 3 novembre 2017.

Code utilisé :

CREATE OR REPLACE
FUNCTION
public.hexagon(i INTEGER, j INTEGER, edge float8)
RETURNS geometry
AS $$
DECLARE
h float8 := edge*cos(pi()/6.0);
cx float8 := 1.5*i*edge;
cy float8 := h*(2*j+abs(i%2));
BEGIN
RETURN ST_MakePolygon(ST_MakeLine(ARRAY[
 ST_MakePoint(cx - 1.0*edge, cy + 0),
 ST_MakePoint(cx - 0.5*edge, cy + -1*h),
 ST_MakePoint(cx + 0.5*edge, cy + -1*h),
 ST_MakePoint(cx + 1.0*edge, cy + 0),
 ST_MakePoint(cx + 0.5*edge, cy + h),
 ST_MakePoint(cx - 0.5*edge, cy + h),
 ST_MakePoint(cx - 1.0*edge, cy + 0)
]));
END;
$$
LANGUAGE 'plpgsql'
IMMUTABLE
STRICT
PARALLEL SAFE;

CREATE OR REPLACE
FUNCTION public.hexagonCoordinates(bounds geometry, edge float8,
 OUT i INTEGER, OUT j INTEGER)
RETURNS SETOF record
AS $$
 DECLARE
 h float8 := edge*cos(pi()/6);
 mini INTEGER := FLOOR(st_xmin(bounds) / (1.5*edge));
 minj INTEGER := FLOOR(st_ymin(bounds) / (2*h));
 maxi INTEGER := CEIL(st_xmax(bounds) / (1.5*edge));
 maxj INTEGER := CEIL(st_ymax(bounds) / (2*h));

https://github.com/maplibre/ngx-maplibre-gl/tree/c04efff199c1d21016c9bd2d6ba774286c5c3e77/projects/showcase/src/app/demo/examples
https://www.crunchydata.com/blog/tile-serving-with-dynamic-geometry
https://medium.com/geolytix/fishnets-honeycombs-and-footballs-better-spatial-models-with-hexagonal-grids-768bdf92d3bb
https://medium.com/geolytix/hex-grid-algorithm-for-postgis-4ac45f61d093

2026/01/31 12:19 53/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 BEGIN
 FOR i, j IN
 SELECT a, b
 FROM generate_series(mini, maxi) a,
 generate_series(minj, maxj) b
 LOOP
 RETURN NEXT;
 END LOOP;
 END;
$$
LANGUAGE 'plpgsql'
IMMUTABLE
STRICT
PARALLEL SAFE;

CREATE OR REPLACE
FUNCTION public.tileHexagons(z INTEGER, x INTEGER, y INTEGER, step INTEGER,
 OUT geom geometry(Polygon, 3857), OUT i INTEGER, OUT j
INTEGER)
RETURNS SETOF record
AS $$
 DECLARE
 bounds geometry;
 maxbounds geometry := ST_TileEnvelope(0, 0, 0);
 edge float8;
 BEGIN
 bounds := ST_TileEnvelope(z, x, y);
 edge := (ST_XMax(bounds) - ST_XMin(bounds)) / pow(2, step);
 FOR geom, i, j IN
 SELECT ST_SetSRID(hexagon(h.i, h.j, edge), 3857), h.i, h.j
 FROM hexagoncoordinates(bounds, edge) h
 LOOP
 IF maxbounds ~ geom AND bounds && geom THEN
 RETURN NEXT;
 END IF;
 END LOOP;
 END;
$$
LANGUAGE 'plpgsql'
IMMUTABLE
STRICT
PARALLEL SAFE;

CREATE OR REPLACE
FUNCTION public.hexagons(z INTEGER, x INTEGER, y INTEGER, step INTEGER
DEFAULT 4)
RETURNS bytea
AS $$
WITH
bounds AS (
 -- Convert tile coordinates to web mercator tile bounds

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 SELECT ST_TileEnvelope(z, x, y) AS geom
),
 ROWS AS (
 -- All the hexes that interact with this tile
 SELECT h.i, h.j, h.geom
 FROM TileHexagons(z, x, y, step) h
),
 mvt AS (
 -- Usual tile processing, ST_AsMVTGeom simplifies, quantizes,
 -- and clips to tile boundary
 SELECT ST_AsMVTGeom(ROWS.geom, bounds.geom) AS geom,
 ROWS.i, ROWS.j
 FROM ROWS, bounds
)
-- Generate MVT encoding of final input record
SELECT ST_AsMVT(mvt, 'hexagons') FROM mvt
$$
LANGUAGE 'sql'
STABLE
STRICT
PARALLEL SAFE;

COMMENT ON FUNCTION public.hexagons IS 'Hex coverage dynamically generated.
Step parameter determines how approximately many hexes (2^step) to generate
per tile.';

-- Test de requête
-- 10, 523, 369
WITH bounds AS (
 -- Convert tile coordinates to web mercator tile bounds
 SELECT ST_TileEnvelope(11, 1046, 739) AS geom
),
ROWS AS (
 -- All the hexes that interact with this tile
 SELECT
 h.i,
 h.j,
 h.geom,
 st_transform(h.geom, 4326) AS geom_4326
 FROM tileHexagons(9, 261, 184, 4) AS h
),
observations AS (
 SELECT
 r.geom,
 r.i,
 r.j,
 COUNT(s.id_synthese) AS nbr
 FROM gn_synthese.synthese AS s
 JOIN "rows" AS r
 ON st_intersects(s.the_geom_4326, r.geom_4326)

2026/01/31 12:19 55/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 GROUP BY r.geom, r.i, r.j
)
-- Usual tile processing, ST_AsMVTGeom simplifies, quantizes,
 -- and clips to tile boundary
SELECT
 ST_AsMVTGeom(o.geom, b.geom) AS geom,
 o.i,
 o.j,
 o.nbr
FROM observations AS o, bounds AS b
WHERE ST_AsMVTGeom(o.geom, b.geom) IS NOT NULL;

Résultats : l'agrégation d'observations sur des mailles hexagonales générées dynamiquement est
assez rapide aux niveaux de zoom 10 et plus.

Annexe 25 - Tests de requête SQL d'aggrégation

SELECT
 t.id_area,
 t.area_code,
 t.area_name,
 t.geom
FROM ref_geo.l_areas AS t
WHERE ST_Intersects(t.geom, ST_Transform(ST_TileEnvelope(12, 2117, 1479),
2154))
 AND t.id_type = ref_geo.get_id_area_type('COM');

SELECT public.squares(12, 2117, 1479);

-- Communes
SELECT ST_TileEnvelope(12, 2117, 1479) AS envelope; -- 9 row(s) fetched -
0,010s (0,001s fetch), on 2024-03-19 at 16:32:36
SELECT ST_TileEnvelope(9, 264, 184) AS envelope; -- 155 row(s) fetched -
0,073s (0,019s fetch), on 2024-03-19 at 16:32:17
SELECT ST_TileEnvelope(8, 132, 92) AS envelope; -- 408 row(s) fetched -
0,188s (0,071s fetch), on 2024-03-19 at 16:36:21
SELECT ST_TileEnvelope(7, 66, 46) AS envelope; -- 873 row(s) fetched -
0,366s (0,097s fetch), on 2024-03-19 at 16:35:29
SELECT ST_TileEnvelope(6, 33, 23) AS envelope; -- 1311 row(s) fetched -
0,490s (0,113s fetch), on 2024-03-19 at 16:37:22
SELECT ST_TileEnvelope(6, 32, 23) AS envelope; -- 6763 row(s) fetched - 1s
(0,439s fetch), on 2024-03-19 at 16:37:55
SELECT ST_TileEnvelope(5, 16, 11) AS envelope; -- 24849 row(s) fetched - 4s
(0,924s fetch), on 2024-03-19 at 16:31:44
SELECT ST_TileEnvelope(4, 8, 5) AS envelope; -- 30521 row(s) fetched - 4s
(0,690s fetch), on 2024-03-19 at 16:34:23

WITH bounds AS (
 SELECT ST_TileEnvelope(8, 132, 92) AS envelope
)

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

SELECT ST_AsMVTGeom(ST_Transform(t.geom, 3857), b.envelope) AS geom,
 t.id_area,
 t.area_code,
 t.area_name
FROM ref_geo.l_areas AS t, bounds AS b
WHERE t.geom && ST_Transform(b.envelope, 2154)
 AND t.id_type = ref_geo.get_id_area_type('COM') ;

-- Maille M1
SELECT ST_TileEnvelope(12, 2117, 1479) AS envelope; -- 72 row(s) fetched -
0,003s (0,001s fetch), on 2024-03-19 at 16:57:41
SELECT ST_TileEnvelope(8, 132, 92) AS envelope; -- 13161 row(s) fetched -
0,211s (0,079s fetch), on 2024-03-19 at 16:59:17
SELECT ST_TileEnvelope(4, 8, 5) AS envelope; -- 481502 row(s) fetched - 6s
(3s fetch), on 2024-03-19 at 17:00:30

WITH bounds AS (
 SELECT ST_TileEnvelope(4, 8, 5) AS envelope
)
SELECT ST_AsMVTGeom(ST_Transform(t.geom, 3857), b.envelope) AS geom,
 t.id_area,
 t.area_code,
 t.area_name
FROM ref_geo.l_areas AS t, bounds AS b
WHERE t.geom && ST_Transform(b.envelope, 2154)
 AND t.id_type = ref_geo.get_id_area_type('M1') ;

-- Maille M5
SELECT ST_TileEnvelope(12, 2117, 1479) AS envelope; -- 6 row(s) fetched -
0,005s (0,001s fetch), on 2024-03-19 at 16:58:06
SELECT ST_TileEnvelope(8, 132, 92) AS envelope; -- 533 row(s) fetched -
0,021s (0,006s fetch), on 2024-03-19 at 16:58:32
SELECT ST_TileEnvelope(4, 8, 5) AS envelope; -- 18856 row(s) fetched -
0,329s (0,119s fetch), on 2024-03-19 at 17:01:26

WITH bounds AS (
 SELECT ST_TileEnvelope(4, 8, 5) AS envelope
)
SELECT ST_AsMVTGeom(ST_Transform(t.geom, 3857), b.envelope) AS geom,
 t.id_area,
 t.area_code,
 t.area_name
FROM ref_geo.l_areas AS t, bounds AS b
WHERE t.geom && ST_Transform(b.envelope, 2154)
 AND t.id_type = ref_geo.get_id_area_type('M5') ;

-- Maille M10
SELECT ST_TileEnvelope(12, 2117, 1479) AS envelope; -- 2 row(s) fetched -
0,002s, on 2024-03-19 at 17:03:21

2026/01/31 12:19 57/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

SELECT ST_TileEnvelope(8, 132, 92) AS envelope; -- 156 row(s) fetched -
0,005s (0,001s fetch), on 2024-03-19 at 17:02:58
SELECT ST_TileEnvelope(4, 8, 5) AS envelope; -- 6013 row(s) fetched - 0,088s
(0,036s fetch), on 2024-03-19 at 17:02:07

WITH bounds AS (
 SELECT ST_TileEnvelope(12, 2117, 1479) AS envelope
)
SELECT ST_AsMVTGeom(ST_Transform(t.geom, 3857), b.envelope) AS geom,
 t.id_area,
 t.area_code,
 t.area_name
FROM ref_geo.l_areas AS t, bounds AS b
WHERE t.geom && ST_Transform(b.envelope, 2154)
 AND t.id_type = ref_geo.get_id_area_type('M10') ;

WITH bounds AS (
 SELECT ST_TileEnvelope(12, 2117, 1479) AS envelope
),
observations AS (
 SELECT
 l.area_code AS code,
 ST_Transform(l.geom, 3857) AS geom,
 COUNT(s.id_synthese) AS nbr
 FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_area_synthese AS cas
 ON s.id_synthese = cas.id_synthese
 JOIN ref_geo.l_areas AS l
 ON l.id_area = cas.id_area
 , bounds AS b
 WHERE l.geom && ST_Transform(b.envelope, 2154)
 AND l.id_type = ref_geo.get_id_area_type('M10')
 GROUP BY l.area_code, l.geom
)
SELECT ST_AsMVTGeom(o.geom, b.envelope) AS geom,
 o.nbr,
 o.code
FROM observations AS o, bounds AS b ;

WITH bounds AS (
 SELECT ST_TileEnvelope(9, 264, 184) AS envelope
)
SELECT
 l.area_code AS code,
 ST_Transform(l.geom, 3857) AS geom,
 COUNT(s.id_synthese) AS nbr
FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_area_synthese AS cas
 ON s.id_synthese = cas.id_synthese
 JOIN ref_geo.l_areas AS l
 ON l.id_area = cas.id_area

Last
update:
2024/06/25
11:31

fonctionnalites:geonature:synthese-amelioration-performance-test https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

https://wiki-sinp.cbn-alpin.fr/ Printed on 2026/01/31 12:19

 , bounds AS b
WHERE l.geom && ST_Transform(b.envelope, 2154)
 AND l.id_type = ref_geo.get_id_area_type('M10')
GROUP BY l.area_code, l.geom ; -- 32 row(s) fetched - 7s (0,001s fetch), on
2024-03-19 at 17:20:06

WITH bounds AS (
 SELECT ST_TileEnvelope(9, 264, 184) AS envelope
)
SELECT l.id_area, l.geom, l.area_code
FROM ref_geo.l_areas AS l, bounds AS b
WHERE l.geom && ST_Transform(b.envelope, 2154)
 AND l.id_type = ref_geo.get_id_area_type('M10') ; -- 32 row(s) fetched -
0,007s (0,001s fetch), on 2024-03-19 at 17:29:37

WITH bounds AS (
 SELECT ST_TileEnvelope(9, 264, 184) AS envelope
),
m10 AS (
 SELECT
 l.id_area,
 l.geom,
 l.area_code AS code
 FROM ref_geo.l_areas AS l, bounds AS b
 WHERE l.geom && ST_Transform(b.envelope, 2154)
 AND l.id_type = ref_geo.get_id_area_type('M10')
)
SELECT
 m10.code,
 ST_Transform(m10.geom, 3857) AS geom,
 COUNT(s.id_synthese) AS nbr
FROM gn_synthese.synthese AS s
 JOIN gn_synthese.cor_area_synthese AS cas
 ON s.id_synthese = cas.id_synthese
 JOIN m10
 ON cas.id_area = m10.id_area
GROUP BY m10.code, m10.geom ; -- 32 row(s) fetched - 7s, on 2024-03-19 at
17:39:22

WITH bounds AS (
 SELECT ST_TileEnvelope(9, 264, 184) AS envelope
),
m10 AS (
 SELECT l.id_area, l.geom, l.area_code AS code
 FROM ref_geo.l_areas AS l, bounds AS b
 WHERE l.geom && ST_Transform(b.envelope, 2154)
 AND l.id_type = ref_geo.get_id_area_type('M10')
)
SELECT
 m10.code,

2026/01/31 12:19 59/59 Synthèse - Tests d'amélioration des performances

CBNA SINP - https://wiki-sinp.cbn-alpin.fr/

 ST_Transform(m10.geom, 3857) AS geom,
 COUNT(s.id_synthese) AS nbr
FROM gn_synthese.synthese AS s
 JOIN m10
 ON s.the_geom_local && m10.geom
GROUP BY m10.code, m10.geom ; -- 32 row(s) fetched - 27s (0,001s fetch), on
2024-03-19 at 17:35:57

WITH bounds AS (
 SELECT ST_TileEnvelope(8, 132, 92) AS envelope
), mvtgeom AS (
 SELECT ST_AsMVTGeom(ST_Transform(t.geom, 3857), b.envelope) AS geom,
 t.id_area,
 t.area_code,
 t.area_name
 FROM ref_geo.l_areas AS t, bounds AS b
 WHERE ST_Intersects(t.geom, ST_Transform(b.envelope, 2154))
 AND t.id_type = ref_geo.get_id_area_type('COM')
)
SELECT ST_AsMVT(mvtgeom.*) FROM mvtgeom ;

From:
https://wiki-sinp.cbn-alpin.fr/ - CBNA SINP

Permanent link:
https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

Last update: 2024/06/25 11:31

https://wiki-sinp.cbn-alpin.fr/
https://wiki-sinp.cbn-alpin.fr/fonctionnalites/geonature/synthese-amelioration-performance-test?rev=1719315088

	Synthese - Tests d'amélioration des performances
	Objectif
	Principe général
	Solutions pour le tableau d'information paginée
	Solutions pour l'export des données
	Solutions pour la carte

	Tests d'amélioration de l'affichage sur la carte
	Principes d'amélioration
	Tuiles GeoJson
	Tuiles Mapbox Vector Tile
	Simplification des géométries à l'aide de Postgis
	Framework carto web et tuiles vecteurs
	Besoins
	Plugins Leaflet ajoutant le support des tuiles vecteur
	Framework carto web avec support natif des tuiles vecteur
	Conclusion

	Tests de serveurs de tuiles vecteurs
	Serveurs de tuiles pour fonds cartographiques
	Serveurs de tuiles pour couches de données spécifiques

	Web service de tuiles vecteurs sur mesure
	Principe des tests de performance
	Comparaison SRID 2154 et 4326
	Comparaison opérateur && et st_intersects avec index GIST
	Comparaison opérateur && et st_intersects avec index BRIN
	Comparaison index GIST et SP-GIST
	Comparaison agrégation via table relation et via intersection
	Test de l'ajout d'un champ area_type_code à la table cor_area_synthese
	Test vue matérialisée pour relations entre observations ''synthese'' et mailles M10
	Test de vues matérialisées pour mettre en cache le nombre d'observations ''synthese'' par mailles
	Test de la création d'une table "cor_area_synthese" partitionnée
	Test de la fonction st_subdivide()
	Test utilisation table "cor_area_synthese" sans lien vers la "synthese"
	Test requêtes Synthese sur VM indexée

	Liste des améliorations
	Conclusion sur l'utilisation des tuiles vecteurs
	Conclusion sur le framework MapLibre GL

	Conclusion générale
	Annexes
	Annexe 1 - Comparaison SRID 4326 et 2154
	Annexe 2 - Comparaison opérateur && et st_intersects avec index GIST
	Annexe 3 - Comparaison opérateur && et st_intersects avec index BRIN
	Annexe 4 - Comparaison index GIST et SP-GIST
	Annexe 5 - Comparaison agrégation via table relation et via intersection
	Annexe 6 - Ajout champ area_type_code à cor_area_synthese
	Annexe 7 - Test de différents index sur area_type_code
	Annexe 8 - Test des différents index sur area_type_code
	Annexe 9 - Création vue matérialisée cor_m10_synthese
	Annexe 10 - Test utilisation de la table "cor_m10_synthese"
	Annexe 11 - Création vue matérialisée m10_observation_nbr
	Annexe 12 - Création vue matérialisée observation_nbr
	Annexe 13 - Tests utilisation vue matérialisée m10_observation_nbr
	Annexe 14 - Tests utilisation vue matérialisée observation_nbr
	Annexe 15 - Création d'une table cor_area_synthese partitionnée
	Annexe 16 - Infos sur table "cor_area_synthese" partitionnée
	Annexe 17 - Test d'utilisation d'une table "cor_area_synthese" partitionnée
	Annexe 18 - Test utilisation table "cor_area_synthese" sans lien vers la "synthese"
	Annexe 19 - Test requêtes Synthese uniquement sur VM v_synthese_for_webapp
	Annexe 20 - Ressources Web
	Annexe 21 - Analyse du nombres d'observation max par communes et taxons
	Annexe 22 - Test utilisation de mailles 20km et 50km
	Annexe 23 - Notes sur les outils utilisés durant les tests
	Utilisation de pg_stat_statements
	Test du serveur de fond carto : Tileserver-GL
	Debugger de tuiles vecteurs
	Framework carto web Maplibre

	Annexe 24 - Test d'utilisation de mailles hexagonales
	Annexe 25 - Tests de requête SQL d'aggrégation

